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ABSTRACT 

In P a r t  I i t  i s  conjectured that a "Mach's principle1' might lead  

to a dependence of the local Newtonian gravitational constant, K , on  
-I 

universe s t r u c t u r e , k ~ ?  . Einstein and others have suggested that 

general relativity predicts such a result. A closer analysis, however, 

including the carrying out of the geodesic equations to second order ,  

seems to indicate that this is not true and that the apparent "Mach's 

principle'' terms involving total universe structure a r e  really only co- 

ordinate effects. Further,  the meaaure of gravitating mass  obtained 

in a local, proper Newtonian gravitational experiment is compared in 

a coordinate free way to an experimentally measurable inertial mass  

and found to be related to it in a way independent of the res t  of the uni- 

verse.  A generalization of these results i s  given. It is based on the 

fact that in general relativity the only way the universe can influence 

experiments done in an electrically shielded lab is  through the metric 

and that this can be "transformed away" to any degree of accuracy for 

a sufficiently small lab. Consequences of this a r e  summarized in Dickers 

"strong principle of equivalence." It is noted, however, that there a r e  

other statements which might be called "Mach's principle a" which a r e  

satisfied in general relativity. 

P a r t  I1 i s  mainly concerned with the introduction of a varying gra- 

vitational constant into the framework of general relativity, violating 

the strong while preserving the weak principle of equivalence (i.e .  geo-

desics for uncharged test part 'cles).  To this end a scalar field, 9
-1

roughly corresponding to K is added to the variational principle of 

general relativity. A weak field analysis of the resulting field equations 

not only yields the required Newtonian limit but also suggests contribu- 

tions of local matter to $ consistent with K-'W 9 . These field equa- 

tions a r e  compared to Jordan's.  The differences include not only the use 

of I< rather than I< a s  a field variable but also our attempt here  to 

relate 4 to a locally measured Newtonian constant. This requires the 

use of equations of motion correct  a t  least through second order in . 
M e l d ' s  method is used for this purpose. The result i s  that the theory 

does predict an  influence on @ consistent with k"-f . The analogue 

of the Schwarzschild solution is stated and the "three standard tests ' '  

evaluated from it. The Einstein results a r e  approached for large abso- 

lute values of W , the coupling constant used for $ . The same 8 0 1 ~ -

tion is  obtained in isotropic coordinates where it can be written more  

simply. To completely determine 4 a boundary condition must be ad- 

ded. The condltionf+o outside matter  i s  proposed a s  it is noticed that 



this would result in a "breakdown" of the field equations in the absence 

of matter. Lack of an exact interior solution hinders discussion of 

the results of such a condition. However, i t  i s  shown that for a fluid 

type mass  shell universe i t  requires preesures of the order of den- 

sities. The cosmological problem is  discussed in relation to Diracls  

1 < ' 1 ~t cosmology. Again, no exact general solutions a r e  known 

yet. However, the f i rs t  few te rms  of an  expansion in terms of CA) 

fail to yirld such a result. Finally, conservation laws a re  discussed 

and conserved total "energies" as  well a s  total "gravitating radii" a r e  

exhibited. 
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I. Introduction 

A. Mach's Principle 

. . . 
~ 

The principle idea which guided Einstein in formulating the gen- 

eral  theory of relativity was the local equivalence of gravitational and 

inertial effects, that i s ,  the equivalence of a uniform gravitational force 
. . 

field and 3 constant acceleration of the reference frame, Another idea 

relating gravity and inertia is Mach's principle. This i s  less precisely 

formulated but: suggests that the inertial properties of a body a r e  de-  

termined by the distributionif matter in the universe. Since the gra-  

vitational field interacts with -all mat ter , '  one could hope to see the Mach 

principle relationship between. inertia and distant matter described in 

terms of the gravitational field, To state this in a, way independent of 

units, consider the ratio of the inertial mass  of a body to its active gra-  

vitational mass .  

- ?v 

B. Gravitational Constant from Dimensional Analysis 

In particular, let us see what this ratio might be in a etatic uni- 

verse consisting only of a mass  shell of radius R and inertial mass M 

together with a relatively small body of inertial mass m at its center. 

If we probe the gravitational field of m with a small te.at particle, we 

might expect from the Ei;tvzs experiment that the acceleration of the 

test particle is  independent of its mass .  It certainly depends, however, 

on m and r and conceivably on M and R. The fact that the Newtonian 

theory of gravity is  valid to a high degree of accuracy suggests that the 



acceleration i s  

-1
where F is  a function of dimensions M L  (velocity of light c = 1. )  

Dimensional analysis then suggests 

For a more general type of universe with masses m at  distance r 
a a 

from some point x ,  this might be extended to 

Until recently experimental determinations of F from 1 ) were 

possible only on the earth. The value found i s  not inconsistent witW3) 

and present astronomical knowledge of m , r . It i s  clear that in a 

2 
a a 

uniform universe, m a N r a  so that the dominant contribution in 3) 

comes from dietant matter and is  fairly constant in space and time. 

This also i s  coneistent with present observations. 

To determine an active gravitational mass ,  m , from 1) i t  ie 
g 

convenient to multiply and divide the right aide by K / 8 w ,  a constant 
0

-1
number of dimensions L M  and equal to the presently observed ter-  

reetrial value of 1 / F .  Thus 

4) 
a =  - 87;m aqe)

The quantity in parentheses hae dimensions of mas s and will be called 

the active gravitational mass  of m.  In other words, a Cavendish ex- 

periment, interpreted in the context of a Newtonian theory with fixed 

gravitational constant KO , would give a meaeurement of active 

gravitational m a s s ,  
m8= 



- - 

Thus 

C. Einstein's Interpretation 

. of ResuLts inGenera1 .Relativity 

1
Einstein claims to find such a result in general relativity. 

As pointed out above, the major contribution tp 5) i s  from distant 

matter and nearly constant. Hence, 5) can be written near the earth 

K O  ma
For local matter ,  however, each is  small compared 

8774 
to one, This suggests that a weak field approximation be used to check 

6 ) .  Einetein doee this and aprives at  

Thus 

.? 

which i s  identical with 6 ) .  Einstein argued from this that since local 

1A. Einstein, The Meaning of Relativity, Princeton, 1955, 

Fifth edition, p. 99-108. 



matter contributed to the ratio, m / m  , al l  the universe probably does 
g l a

(Section 11). There has been some discussion of what the numerical 

co-efficient of m T i n  the right side of 8) should be and indeed. the 4"
f irst  approximation procedure seems inadequate to resolve this. Con-

sequently, the equations of motion through second order will be applied 

to this problem in Section 11, pages 6f .  

D. Coordinate Dependence of This Result 

3  

This result 8) o r  i t s  corrected form 11-11) below is  clearly co- 

ordinate dependent, however. Hence the rel+tionship between i t snu -  

merical description of th.e path of a particle and the actually observed 

path is  not defined without further analysis. The usual interpretation 

of general relativity i s  based on the identificqtion of the invariant theo- 

retical measure of  an  interval, proper time, with time experimentally 

measured in some fundamental way, e .g .  , on an atomic clock.. . An 

invariant measure of distance and thus acceleration can be obtained 

from this by setting the velocity of light one. When this i s  done, the 

invariant description of the path of a test particle relative to a central 

mass. i s  found to be approximately Newtonian with coefficients inde- 

pendent of the res t  of the universe. (Section 111, pages 10 f . )  

E. Relation of m to Inertial Mass 

However, the number M appearing in 5) has not yet been related 

to an experimentally measured inertial mass .  To remedy this,  a des- 

cription of a process for invariantly studying the acceleration of charged 

bodiesin a known electr ic field is  given. The resultant ratio of "force" 
. . 

' 

: l a  W. Davidson,Monthly Notices Roy. Astron. Soc. 11 -7, 21 2. 



to acceleration is defined a s  the inertial mass.  For a simple theory  

of matter hl
h.4 

i s  found to be just the m appearing in 5) (Section IV, p. 13f.)  

This procedure assumes a given standard of charge and time interval.  

Between Inertial aqd Gravitational Mass 

from the Rest of the Universe: 

p 

The independence of the relationship between the two numbers, 

m and m.  , from the r e s t  of the universe i s  more generally true 
g inert 

than the above special case might indicate. In other wordg , if an 

electrically shielded empty lab is  almost flat, then the introduction 

of small masses and charges within and the study, both theoretical 

and experimental, of their motions and interactions is  independent of . -
the res t  of the universe. This i s  because once the lab i s  shielded the 

only way the rest  of the universe could influence i t ,  according to gen- 

eral  relativity, i s  through the metric. If Mia is  sensibly flat within, 

then there can be no influence within. This i s  Dickers "strong prin- 

aiple of equivalence. " (Section V, pages 26 f. ) ' 

G, Other "Mach's Principles" 

There a re ,  however, other statements which might be consid- 

ered Mach's principles. Two of these a r e  briefly discussed. F i r s t ,  

the universe can change the inertial and gravitational mass  of a body, 

e . g . ,  by heating it ,  but a s  pointed out above it does not enter into a 

etatement of their relationship. Second, the motion of inertial, i .  e . ,  

almost flat, frames is  determined by the mass  distribution in the 
b 

I 



universe. (Section V. ) 

11. Eingtein's Interpretation of Approximate Relative 

Coordinate Acceleration of Two Masses 

Inside a Static Spherical Shell 

A. Introduction: Weak Field Metric and Geodesic 

Gravity and general relativity being largely conaerned with 

the interaction between masses a s  masses ,  Einstein was naturally 

interested in whether or not a Mach's principle as  discussed in Sec- 

tion I above was satisfied in general relativity. Specifically, i s  the 

attraction and resultant relative motion of two gravitating bodies in- 

fluenced by the res t  of the universe? 

Einstein investigated this in the weak field approximation. 

The metric he found to represent the gravitational field due to a dis- 
r 

tribution of small masses corresponding to a "density" V and having 

small velocities, az can be written a s  

-
80; - an-

on replacing Einstein's imaginary time x 
4 

by the real  -%d- - - P~ . ~ 

Equation 1 )  i s  correct only to order 1 in k l q v , and 
i, 

The geodesic equation for a test particle in this field becomes 
:" g  
'8 

2 Ibid.-



where 

B, Static Shell Universe: Einstein's Interpretation; 

Restatement in Terms of Active Gravitations1 Mass 

and Gravitational Constant 

For  simplicity consider the application of these results to the 

case of the motion of a test particle near a small mass ,  m ,  at  res t  

at  the origin, all inside a static, spherical shell of mass  M and radius 

R. 
3 

Here 2) becomes 

i
3:<, 
!.I times the coordinate acceleration 
$c 

of the test particle is  just the Newtonian term,  to this approximation. 

ein interpreted this by saying that the "inert mas6 i s  proportional to 

""', o r i n 4 ) t o  . However, an[ I -+a($+jp)] 
3 This example, while admittedly rather specialized, is  sufficient 

. to illustrate the ideas under consideration. 



equivalent statement, more convenient for this discussion and in keep- 

ing with that sf Section I, can be made. Specifically, dividing 4 )  by 

' gives for  instantaneously ,zero, 

This, in keeping with Einstein's interpretation a b ~ v e ,  would sqggest 

that the locally measured Newtonian active gravitational mass  of m i s  

o r  that the locally measured Newtonian grsvitational constant i s  

If this i s  t rue,  a compirrison of 6) with 1-5) wavld show that a Mach's 

principle in the sense of Section I would be satisfied iq general relativ- 

ity, since the number kE in 7) ,  measqring the a t t r a c t i ~ n  of 3n 

for test particles would depend on the mass  distribution, M/R, in 

the res t  ef the universe. 

C. An Objection; Correction to Higher Order 

5
One objection that might be raised against the above procedure 

is based on the fact that 4 )  and thus 5) *re true only to f irst  order in 

P 
and . Hence the "Mach's principle" terms in 

.-
5)  a re  of higher order than can be consistently be retained. 

5  See also in this connection W. Davidson, Monthly Notices, 

Roy. Astron. Soc. 11 7, 21 2. Davidson criticizes Einstein's 
-7  

retention of the (7V term because of the assumed smallness 

of 'V . He "corrects" this by retaining all  velocity terms 

in the geodesic equation. His result i s  still questionable, how- 

ever,  on the basis of the discussion following in the text. 



In other words,  the difference between 5) and 

i s  too smal l  to be retained in  view of the approximations made in de- 

riving 5). Consequently, t o  the accuracy assumed,  6)  should be 

written 

and 

This objection, however, can be overcome by studying the equa- 
6

tions of motion to higher o ~ d e r .  The resu l t ,  for  the same  type of 

universe is 

.. 

!. 
>I 

.$ 

, . .  

k4M2 
In equation 11). t e r m s  of o rde r  (r)have been neglected a s  well 

a s  t e r m s  of o rde r ,  . These a r e  not relevant to this discussion 
R 

and for a situation of physical interest  would be sma l l  compared to 
L 

the t e r m s  kept. T e r m s  of o rde r  ( and have
R A 

not been neglected, however, s o  that equations analogous to  6)  and 7) 

6A. Papapetrou,  P roc .  Phys.  Soc. (London) 64A, 57 (1951), -
V. Fock,  J .  Phys.  (U.S .S .R. )  1 ,  81 (19391, L .  Infeld, Rev. -
Mod. Phys.  -29, 398 (1957). 



might be written 

and 

There ie ,  however, another objection that might be raised against 

these results. This i s  discussed in the following section. 

111.  Locally Measured Newtonian ~ r a v i t a t i o n a l ~ ~ o n s t a n t  

and Active Gravitational Mass in General Relativity 

From Invariant, Proper 

Distance-Time-Acceleration Measurements 

A.  Introduction: Meaning of Coordinates and  

Their Relation to Measurements  

Since 11-1 1) contains coordinate acceleration and distance, there 

is  a question associated with the interpretation of i t  in Section 11. This 

question concerns the meaning of coordinates and the metric tensor. 

The usual interpretation of general relativity res ts  on the identification 

Z 

as  the differential of "proper t ime,"  or time read on some basic, e . g . ,  

atomic , clock associated with the coordinate interval AX'. Defining 



the velocity of light to be one, and assuming a light ray to be a null 

geodesic, provides the basis for a method of obtaining a "proper" 

measurement of a "distance" between particles. Specifically, the 

proper distance between two time like paths will be taken a s  one 

half the proper time of flight (measured along one path) of a light 

7 
ray from one path to the other and back again. This provides a 

coordinate f ree ,  if impractical, method for obtainipg a measurable, 

numerical description of the relative motion of two bodies. 

B. Application to Local Gravitational Acceleration; 

Conclusion 

An appl icat i~nof this method to 11-1 I )  yields 

i 
where ?p i s  proper distance a s  measured from the test particle 

0 .
to 9% and xp i s  proper time along the test particle. In obtain- 

ing 2) higher order t e rms  in and * were neglected but the 

K M  km term was kept and cancelled out. 7 7  
Thus, a coordinate f ree  description of the motion shows that 

it i s  independent of the mass distribution in the rest  of the universe, 

at  least to the order of approximation for which 2) i s  valid. Hence, 

this example does not seem to indicate the validity of a physically 

detectable Mach's principle in general relativity in the sense of Sec- 

tions I and 11. 

7 E. Wigner, Rev. Mod. Phys. 29, 255 (1957).-

L 



C. Calculations Leading to 111- 2 

The calculation leading from 11-1 1) to 2) i s  straightforward. 

F i r s t  of al l ,  it should be noted that m must be replaced by a non- 

singular source a s  used in the Papapetrou-Fock method before a 

proper distance between its center and that of the test  particle can 

be defined. However, for the purpose of the discussion above, 

t e rms  of order a r e  neglected and, since both sides of ( $2)" 
11-11) a r e  already of f i rs t  order in k3n , this means that con- 

4 

tributions to the metric from m can be neglected. Hence, Infeld's 

renormalized delta function, which disregards self interaction 

could equally well be used. 

Secondly, since 11-1 I is accurate only through terms,  ($9;
.ILM 

R o , and both sides of 11-11) a r e  already of order 9 . 
only te rms  linear in X "in the metr ic  need be kept in converting 

the distances and times in 11-11) to proper units. The fact that only 

the "first order" t e rms  need be kept is important because the metric 

obtained by 1nfeld coincides to this order with that of Papapetrou- 

Fock. Further,  the coordinate description of the motion of 'H bodies 

through second order,  of which 11-11) i s  a special case,  i s  the same 

in either method. Thgs, the really observable prediction, a relation 

of proper relative accelerations to proper distances and velocities, 

is identical in both cases.  

Finally, for the example at  hand, all particles a r e  instantaneous- 

. .  ly at  r e s t  and terms R a re  to be neglected. This essentially 

means that between the test particle and m ,  changes in the background 

metric,  i. e. , neglecting m ,  can be ignored. Thus 

-= 'background metr ic ,  i .  e .  , with m = 0 

3 



where xpo and zpi a re  proper time and distance a s  defined above. 

For the example at  hand 

Thus 11-11) becomes 

which immediately reduces to 2).  

The question of what the "ml' appearing in 2) means and how it 

i e  to be measured will now be taken up. 

iV. Relationship Between Stress-  Energy Tensor of Matter 

and Experimentally Observed Inertial and Active Gravitational Mass 

A. Introduction 

The discussion in Section I11 did not say anything about the phy- 

sical meaning of the number m appearing in the right side of 111-2). 

Mathematically this number m came from the s t ress  tensor of matter 

in the Einstein equations and in fact,if W
P
= four velocity of the par-  

ticle, it i s  

for either the Infeld or the Papapetrou-Fock method (see eqn* 24,-
page 21; eqn. IX-6, page 70). 



However, this i s  still not enough and merely  replaces one unknown 

by another, 15 by n/w 
S , leaving the physical meaning and method 

o f  measurement o f  the latter undefined. 

This  section will consider one of  two coordinate f ree  methods 

for obtaining physically measurable numbers aesociated with the ten- 

s or -* , namely the measurqment of inertial m a s s .  The  other, 
Id 

active gravitational m a s s  was considered in  sections I1 and 111. Thus 
rrB .

1s considered as a mathematical intermediary between two /d 
observed numbers. 

In order to  measure  inertial m a s s ,  "standard" electromagnetic 

theory will be assumed with i t s  conserved current density. This  

gives a constant total charge and it  i s  assumed that quantities of  this 

charge are physically available in  arbitrarily small amounts. A 

standard Coulomb law experiment ,  in  proper uni ts ,  will then provide 

a method for measuring inertial m a s s ,  the units o f  which will thus 

be determined solely i n  t e r m s  of  a unit of t ime and charge. 

The  two numbers ,  inertial and active gravitational mass  will 

be proved approximately equal for the ca$e o f  a "f luid,"  irrespective 

o f  what the m a s s  distribution in  the res t  o f  the universe i s ,  provided, 

o f  course,  that i t  does not encroach on the laboratory and that the lat- 

t e r  and the masses  and charges in  it  are suf f icient ly  small. 

As far aa this paper i s  concerned, the main  significance o f  this 

result i s  not so much the equality of  active gravitational and inertial 

m a s s  but the fact that the "function" expressing one i n  t e rms  of the 

other i s  independent o f  the res t  o f  the universe.  A generalization of  

thia result will be sketched in  Section V. pages 26 f .  



B.  Electromagnetic Theory: Field Equations; 

Conservation of Charge; Equations of Motion 

Standard electromagnetic theory in general relativity i s  

based on the following equations 

-

where G i s  a scalar ,  Gfl an antisymmetric tensor and 
R 

the'four velocity of the chqrge. From 2 )  and the antisymmetry of 

FWp~ O I ~ O W S  

'; i 

, . 

Hence, if on each surface X %  d , [7- is zero outside a 
. ,.  

, ~ ,  bounded region then  

x:'=t 

1 charge of the distribution represented by v wP( . It i s  assumed 

t a unit of charge as  defined by 5) i s  physically available. The 

onal definition of inertial mass  as  described later  in this section 



i s  fundamentally based on this association of the theoretical num-

ber 5) with a given, physical "charged" particle. 

The equations of motion follow from conservation of the to-

tal stress-energy tensor given by 

Thus. = becomes[TG'~) 0 

C. Papapetrou's Equations of Motion:  

His Choice of Stress Tensor;  

"Mass Density," Pressure ;  Definition of m  

8
Papapetrouls derivation of the equations of motion in general 

relativity i s  based on the conservation equations, which in the absence 

of charge become 

8) -- 0 
m" J P  2 .  m 

, .: 
where 

8 A. Papapetrou, Ibid.-



m a @  
The standard choice of / for a fluid is 

m7 

with p and p scalars and p much smaller than p . P a -

papetrou only defines his choice of J*@ through the approx- 
... 

imations necessary to derive the equation of motion through second 

order. He aseqmes that for a situation represented by 3 "particles:' 

C
at  points gCI., r"lai s  the sum of Y terms,  

rn  

i  
with each 

Ar a0' 
vanishing outside a small region around zLL 

< 
with ,  

the radius of this region much emallor than the separation / x& - %d( /  
between any pair  of to a q e t r i c  of signature  

(-, +++) his choice for to the necessary order becomes  



where 

He assvmes  that the functions f i ( ~ )and &(x) are spherically 

symmetric  about %' . This  i s  not an vnrelsorpblo assumption 

since I'distortingl1 farces on a f r o m  ravitating mame M at a 

distaqce R w ~ u l dbe o f  the order a" where / A  i s  the dis-  
4 Ra

tance $cross the m a s s .  From the assumptiqn above, .&<< k , 
so that this "distortingr1 force.can be neglected compared to  the gra- 

vitational force . Finally, he.also assumes  that the velocities 

X, 
i 

are small 
7P 

compared to  one, %
4 

being o f  order two, the 

same order as ua . 
The m a s s ,  m, which appeared as the  active gravitational m a s s  

i n  11-1I ) above i s  defined for t h i  a* particle by 

where i s  a region containing all points at which # 0 
but none where f i # for bf CL . H e  obtains, 

and 



from the lowest order equations of motion, From 16) and the 

spherical symmetry of Pa , /Tq , i t  follows that 

The lowest order terms in the metric tensor can then be written 

D. Comparison of Papapetrou's Variables 

to Usual Choices; Meaning ~f hie "m" 

The comparison between Papapetrou's choice, 1 Z), and the 

standard one in equation 10) now follows immediately. Inserting 

18) into 10) and carrying out the operations to an order comparable 

to 1 2) gives 



Hence, the pressure terms in 19) and 12) caq be identified while 

the densities ane related by 

or ,  f rom 18) and lo ) ,  

Thug Papapetrou's active gravitational maee is  just 

The similarity of the f i r s t  term on the right side of 22) to 

tot31 charge ia aignific~nt.  In fact. if P=d , p& is  con- 
, 

served so that the argument used to define a constant charge in 

,:', IV-B above could also be used here. From 17) the second term on 

?$
i' 



the right can be replaced to this order of approximation by 
-

. . 

E. ~ e a s u r e m e n tof ~ n e r t i @ l ~ a s $  

in Papapetrou's Formalism by Using 

f  

The arrangement for measuring an inertial mass associated 

with % i s  a s  follows. F i r s t  of al l ,  add a spherically symmetric 

charge distribution to W q  giving it a total charge . Do the 

same to another mass  Wb much nearer to ?)lq than the other 

bodies in the universe. Further,  these particles a r e  asspmed to 

- be in an electrically shielded laboratory. Then measure that part 

of the proper relative acceleration of to Ynb due to the 

presence of e . Determine this acceleration as  a function of prop- 

e r  distance between 'I))a and when they a re  instantaneously /mb 
at  res t .  



I% 
The limit ( 3t component of relative proper acce- 

leration) 

will then be called the inertial mass  of . . ma. , provided i s, 

much greater than % . 9 

To car ry  out this prsgram in P+papetrouls formalism, write 
. . 

Equation 26) with u= (. I will be integrated over Ra under the 

assumption that the res t  of the universe is  instantaneously at  rest .  

Further, only f i rs t  order terms in mq will be kept. The deter- 

mination of the electromagnetic field on the right of 26) is  based 

on 2). If all particles a r e  instantaneously a t  reet ,  g4i=0 ,  

to the necessary order and that part of the field due to b can be 

written 

9 This i s  to eliminate the necessity of converting from reduced mass 

and is  only for computational convenience in the example at  hand. 

A more accurate definition taking this reduced mass effect into 

consideration could easily be made, but its complexity would 

unnecessarily confuse the point of this example, namely, the 

independence from the reet of the universe of the relationship 
i 

between active gravitational mass  and a reasonably defined 

1 inertial mass .  



The ahielded laboratory walls have eliminated any radiation 

contributions to 27). In integrating over 26) only that part of the 

electromagpetic field due to ,b , a s  given in 27), need be kept 

since the self t e rms ,  due to & , would integrate to zero a s  a 

result of the spherical symmetry valid in this approximation. 
. . 

Sincgonly first order reeults in a r e  desired, the contribu- 

tion of 'Mo_to the metric will be neglected. Fprther, it will be 

aseunied that 'PIb' ,while much larger than w, ie still eo 

small that its contribution to the metmic can beneglected in com- 
. . 

parison to that of the reet of the univerep., Finally, using 18) for 

the metric, integration gf 26) over /?A g i v e s  

t t  

w e 5 89! and G
l 

and d, are  func- 
I 

tions arieing from the second term in the left side of 26) and thus 

a r e  proportional to derivatives of the metric tensor. It ie easy to 

verify that the neglect of the electromagnetic contribution to the 

metric teneor ueed in obtaining 28) ie justified because of the limit 



e-30 in the definition. 
10 

The tesms in may not cancel 

now as  they did in Papapetrou's work where e= 0 and 

However, hepe the left side of 29) will be of order C 
C 

, so that 

the difference between the terms in 28) and those in the 
Z

case a r e  of order , and does not contribute to the te rms  in  

I 1  
the definition. 

The conversion of 28) to proper units proceeds precisely a s  

in the transition from 11-11) to 111-5). The final result i s ,  to the 

necessary approximation, 

Hence 25) yields 

10 This argument can be sketched a s  follpws. (Changing to proper 

acceleration and keeping ea 
terme would pvt 28) in the form 

with $, and jzL independent of e . Thus 

a h 2  aehi
2,  
a e  (m+neLf)a ,  

Inserting this in the definition 25) shows that f could have been 
set  zero. 

11 See footnote above. 



--- - 

This then is  the required regult for the case of a particle rep-  

resentable by a fluid type tensor,  

While 31) has been derived only through order  one in ma , 

t e r m s  of order  m M have not been neglected. It may 
a universe - a 

be t rue  that non-zero t e rms  of order  will appear on the right 

side of 31), but these a r e  not really relevant here. The whole 

purpose of this section and the calculation leading to 31) is  to pre-  

sent an example of a relationship between active gravitational mas s  

and a reasonably defined inert ial  mas s  that i s  independent of the 

r e s t  of the universe. This was done using a unit of charge a s  a 

standard so that in these units, using time and charge, the locally 

measured Newtonian gravitational constant in general relativity i s  

independent of the r e s t  of the universe. This i s  consistent with 
-

- .  . 
12 .

Dicke ' i  strong principle of equivalence. 

By now the reader  i s  undoubtedly aware that all of the calcu- 

lations leading to the coordinate f ree  resul ts  111-2) or IV-31) 

could most conveniently have been done directly in a wordinate  

system in which the background metr ic  has already been "trans- 

formed away. " A study of this approach to the problem i s  contain- 

ed in the next section. 

12 R. H. Dicke, Science, 129, 621 (1959). See also R. H. Dicke,-
Rev. Mod. Phys. 29, 355 (1957). Jour.  Wash. Acad. Sci. 48. -
213 (1958). Am. our. Phys. 28, 344 (1960). - 



V .   Sqmmary and Generalization: Strong and Weak 

Equivalence Principles in General Relativity; 

A .  Introduction 

Dicke's Strong and Weak Equivalence Principles 

Th i s  section will be mainly concerned with investigating 

some o f  the consequences o f  the fact that i n  general relativity the 

entire gravi tat i~nal  interaction between masses  i s  carried b y  the 

metr ic  tensor which can be "traneformed away" to any desired 

degree o f  accuracy over a sufficiently small, neighborhood of  any 

point. This  fact leads naturally to  the  following definition rela- 

ting a standard physical lab to B mathematical "coordinate patch. I '  

A locally almost flat physical coordinate sys tem i s  one in  which 

test  particles o f  any velocity experience no observable acceleration 

when there i s  no matter or radiation within it. 
13

Using this definition, Dicke's strong principle o f  equiva- 

lence cap be defined as the assertion that in  the abeence o f  non- 

iner t id  and non-gravitational forces ,  the numerical content o f  ex -  

periments performed i n  a locally almost flat physicbl coordinate 

sys tem is  independent o f  any characteristics of  the m a s s  distribu- 

tion in  the res t  o f  the universe. I t  i s  important to  realize that 

thie i s  a definite extensiolr of such results o f  the Eztvgs experi- 

ment as generalized in  the weak principle, i , e ,  , the assertioe 

that the acceleration o f  a tes t  particle i n  a gravitational field i s  
./ 

independent o f  i t s  mass  i n  the limit as this m a s s  goes to  zero.  In 

13 R .  H,Dicke, =.
ii 



other words, the Eb'tvb's experiment suggests that the accelera- 

tion effects on a sufficiently small lab of a gravitating body out- 

side it can be at  least  approximately eliminated by allowing the 

lab to fall "freely" since it seems to imply that al l  parts of the 

lab would fall with very little, if any, relative acceleration. 

However, it contains nothing to suggest that the only effect of the 

gravitating body on the lab i s  accelerative, which is  the basis for 

the strong principle. 

A sketch of an argument generalizing the results of Section 

I-Wabove and svggesting the validity of a strong principle in 

general relativity follows. 

B. General Argument Suggesting the Validity of 

A Strong Equivalence Principle in General Relativity 

Aesurne that the s t ress  tensor of matter is the sum of two 

m 
parts.  and /U . 2 a real  number, and f 0 out-

side the lab and %J Z 0 inside it. Further,  let the coordinate 

space-time dimensions of the lab, centered a t  the origin, be pro- 

portional to ! . Assume that a coordinate system can be chosen 

in such a way that the differences of the metric teneor from the 

Minkowskian, 3 , together with its f i rs t  two derivatives over 

the lab a r e  bounded by numbers which go continuously to zero in 

the limit a s  both 6 , 2 , go to zero. This i s  simply a state- 

ment of the fact that in the absence of matter  within i t ,  the lab 

i s  to be locally almost flat. Writing the metric tensor as  the  

sum of two p q t s  )(A ) + y(2) with 
/ +o  

= and  

, ,  the variables on which the s t ress  tensor depends as  , satis-

fying equations of motion, 



then 

and the full field equations reduce to 

Hence, within the lab 

with and H -0 a s  & ->Oand the assumption of sufficient 

continuity of T and f a s  functions of their arguments has been 

\
made. On the other hand, if 1: = 0 the field equations would reduce 

J to 4) wi thFz0=  ff . Hence, assuming continuity of solutions in ! , 

/7 , the influence of the res t  of the universe on the mass  distri- 

bution and fields within the lab can be made arbitrarily small by 

making the lab and masses in it sufficiently small. This i s  just an- 

other way of saying that the "background metric from the res t  of the 

universe can be "transformed away1' to any desired degree of accuracy 

1 . :
:1 for a sufficiently small lab. 

, ,~ 

i 



There a r e ,  however, other possible statements which might 

be called llMachls Principles" and which a re  valid in general rela- 

tivity. For example, the universe can influence, over a long enough 

time, what the inertial mass  (as measured in units of charge), of 

a body i s ,  for example by raising the temperature of a "fluid" or 

"dust, However, in so  doing the active gravitational mass will 

a l s o  be changed and, provided the body can still be contained is a 

locally almost flat system, the discussion above indicates that the 

relationship between the two will be expressible in terms involving 

only the final state of the fluid or dust and excluding asry reference 

to the res t  of the universe. Further,  i t  should be noted that this 

i e  not a local effect, in the general four dimensional sense used in 

the strong principle; since for any given state of the universe there 

-i s  a lower bound to the time p q u i r e d  to produce an observable 

, effect. 

Another possible Mach's principle might be suggested by the 

statement that inertia$ and gravitational forces have a common for- 

mal origin in general relativity. For example, for a test particle 

D(
of mass m and velocity , 

might be igleptified with the gravitational force. On the other hand, 

d 

this term transforms just a s  an inertial force should, i. e . ,  in 

going to a relatively accelerated system, the acceleration enters 

F~ linearly.. Thus F~ might also be identified with "inertial 

., force. " 
(I 

$7. 
f,i 



Inertial coordinate systems would then be those in which F' vanishes 

or equivalently, those in which "free, " unchargeg test particles a r e  

unaccelerated. This coincides with the definition of locally almost 

flat coordinate systems above. Another way of saying this i s  that 

the locally almost flat or inertial coordinate systems a re  those in 

which the total gravitational force vanishes. Thus, since Einstein 

equations, together with suitable boundary conditions, relate the met- 

r ic  tensor to the mass distribution, genergl relativity does predict the 

state of motion(up to a velocity translation) of the inertial frames 

relative to the res t  of the universe. However, once i t  i s  required 

that fundamental, standard experiments be done in such frames,  

the res t  of the universe cannot, in general relativity, influence their 

results.  



PART I1 

VI. Introduction 

A. 

Gravitational "Constant" 

That general relativity satisfies the strong a s  well a s  

the weak principle of equivalence has been indicated by the 

discussion in  par t  one. There it  was shown that in general 

relativity it  i s  not only t rue  that nearby m a s s e s  give all  teet  

particles instantaneously a t  r e s t  in  a smal l  shielded lab approx- 

imately the same  acceleration (weak principle) but also that 

this acceleration i s  the only effect of these masses  detectable 

within such a lab, provided it i s  sufficiently smal l  (strong 

principle). 

The purpose of par t  two i s  to consider a theory that 

explicitly violates the strong principle of equivalence but i s  

otherwise very s imi lar  to Einstein theory. In particular,  the 

weak principle will be rigorously satisfied, 

While the E8tvBs experiment done with sufficient accu- 

racy  might be taken a s  an indication of the validity of this weak 
I 

principle, i t  says nothing a t  a l l  about the strong principle, In 

fact,  this strong principle, on which general relativity i s  based, 

has not been experimentally verified. On the contrary, there 

14 
a r e  reasons for  suspecting that i t  i s  not t rue.  Hence a theory 

violating it  might a s s i s t  much needed experimental investigations. 
J 

14 See e .  g. P a r t  I pages 1-2, and the discussion following in 

the text,  These arguments suggest a violation of the strong 

principle mainly through a varying gravitational "constant. " 

Other possibilities include varying dielectric and/or fine 

s tructure "constants. " See e .  g.  P.  Jordan, Schwerkraft -und 

Weltall, Braunschweig (1955). Second edition; R. H. Dicke, 

Science 129 621 (1959), A. J .  Phys.  -28 344 (1960).-



In discussing the strong principle and local standard experi- 

ments testing i t ,  it i s  important to recall that all  experimental 
. . 

results a re  basically ratios of numbers. Some of these ratios 

contain standard "units" in an  essential way. For  example, the 

statement, "the velocity of light, C,  equals one. I '  makes no phy- 

sical assertion beyond stating that the units of time and length 
42.

have been chosen so that'the ratio for a light ray  interval 

( & , At), in these units i s  one. Nqture provides other basic 

quantities, e. g . ,  Planck's constant , the mass  rn and charge 
e 

e of the electron, the visible mass  in the universe, M , the 
v 

age of the universe T ,  and the Hubble radius RH , whose numeri- 

cal values a r e  again obviously dependent on units. However, 

they do combine into numbers (Eddington numbers) such as  

-. 

;;. that a r e  dimensionless and have values which a r e  independent 
5, 

of the units used in measuring the individual factors. Hence, 
.I I: 

1; statements to the effect that any or all  Eddington numbers a r e  

dependent (or  independent) of when and where they a r e  measured 

a r e  definite, well defined statements subject to experimental 



testing. F o r  example, a t  leas t  one of these numbers,  

might certainly be expected to depend on when i t  i s  measured.  

At f i r s t  glance 1)  appears  to be a rather motley, if 

"fundamental': collection of numbers.  Actually their  p res  -

ently observed t e r res t r i a l  values seem to suggest a re l a -
15

tionship between, them, In fact,  the numbers in  the nth 

line of 1) *re very  roughly equal to 10 
40(n-1) 

This is a very  big span of numbers.  Accepting these 

values a s  purely coincideptgl might mean overlooking impor- 

16
tant physicirl relationehips.. Dirac conjectured that a com-

prehensive theory might connect these numbers. This 

connection might be approximately a simple algebraic one. 

The numbersin the f i r s t ,  second and third row a r e  approx- 
17

imately equal to the zeroth , f i r s t  and second power respec- 

tively of the same number. The mos rrf o vious choice for this 

independent variable might be , the age of the 

universe in "atomic" units. 
. . 

... 

15 P. A. M. Dirac, .Pro.c. Roy. Soc. (London) A165 199 (1938). -
R. H. Dicke, Rev. Mod. Phys.  -29 355 (1957). 

16 P. A. M. Dirac, Ibid. -
17 In these o rde r  of magnitude arguments there is li t t le dif- 

ference between zeroth power and logarithm. F o r  O( I 

the logarithmic dependence has been sugges$ed by Landau 
and investigat'ed by Dicke, Science 129'621 '(1959) in the 

. . context  of Diracls cosmology. ~ h u s  

J 



The resulting time variation in the Eddinpton numbers  

could be accounted for in several ways. Quaqtities such as   

k , m e '  C could be allowed to vary. This would 

entail, of course, a revision of quantum theory, elementary 

particle studies and electromagnetic theory. On the other 

haqd, these quantities could be dxed, dsfinition, and thue 

provide a natural se t  of upits. Settipg $jfi,- % = C = / , 

the values of f ly , RH , and /( would then vary with time, t, 

The f i r s t  line of 2) can be rewritten a s  

The right side of 3) might be interpreted a s  eome sort of sum 

-of m / r  over "visible," i . e . ,  causally connected, masses and 

adii. A relationsimilar to this was obtained from dimension- 

41 arguments in part one, I-B,  ppges 1-3. 

In part two a theo,ry containing a varying "constant will 

e considered but not precisely in the "unitsNmentioned above. 

hing will be said about the electron mass ,  m . The vel- 
e 

Y of light will still be defined to be unity but now, as in 



part one, basic units of time (e .g .  an atomic period) and charge 

(e.g.  the electron's) will be assumed available, and the latter 

made to correspond with the conserved total charge mathema- 

tically obtained from the current density. A standard coulomb- 

law type experiment then provides a method for measuring of 

18
inertial mase. It i s  in these units that calculations will be 

made of the locally measured gravitational "constant" a s  a func- 

tion of the mass  distribution in the universe. Whether or not h 

and m expressed in these units a r e  really constant is beyond the 

scope of this paper. 

~ i b e nthe desirability of investigating a theory containing 

a gravitational constant dependent on the mass  distribution of 

the universe, how might such a theory be constructed? In par- 

ticular, how might k be determined? 

It is  clear that k must be a function of some invariant i f  

it i s  to be dependent only on where and -when i t  i s  measured. The 

only field quantities available in general relativity a re  the metric 

and electromagnetic fields. Since i t  would be required that al l  

matter, even uncharged, should contribute, i t  i s  clear that in 

any theory similar to standard general relativity the main contri- 

bution would have to come from the metric a s  opposed to the 

electromagnetic field. The only non-trivial invariants formed 

from the metric would depend on a t  least its second derivatives. 

These, however, would be too sensitive to local matter in any 

Einstein type theory. Further, these invariants contain only 

dimensions of length, so that the function expressing -k in terms 

of them would have to be dimensional itself. 

Hence i t  seems likely that a scalar field of which k would 

be a function must be added to general relativity. 

See Pa r t  One IV-E, pages 21f. and P a r t  Two IX-C, pages 71 f .  



B, The Variational Principle end Field Equations 

Denoting the scalar  field by @ , a hint a s  to what func- 

tion will be of @ might be taken from P a r t  One I-B pages 

1 f .  and Pa r t  Two VI-A pages 31 f ,  above. Specifically some 

relption such a s  

? 
1 . . might be expected. Hence a likely candidate for a generally 

ki 
covariant. field equrrtion might be ' . 

This i s  borne out in an analysis of a variational principle 

(VII pages 48 f . ) .  The basic assumptions eeed in obtaining this 

' ' 

variational principle a re  thgt the equations ~f the matter vari- 

ables a i e  to be formally the same a s  in general relativity and 

that the Lagrangian for the metric is t o  be proportional to 

:  the curvature scalar .  Thus the weak principle of equivalence 

is still rigorously satisfied and the field equations a r e  linear 

in the second derivatives of the metric tensor. Further,  the 

entire theory of matter  and electromagnetism is  left unchanged 

and, the Coulomb determination of inertial mass  used in gen- 

eral  relativity (Pa r t  One IV-E pages 21 f .  ) i s  the same. 

These conditions narrow the choice of variational prin- 

ciple considerably, although there still remains some freedom 



in the choice of Lagrangian for # . This is  eliminated by choosing 

the simplest Lagrangian consistent with a dimeneionless coupling 

constant and a field equation for # of the form given by 5). 

The field equations obtained from the finally chosen varia- 

tional principle a re  very similar  to the standard Einstein equations, 

but with a modified source tensor, (YII-B, pages 49.f.). This 

source tensor is the product of f with'the sum of the ordinary 
1 

i mass tensor and a. tensor obtained from 4 andi t s  derivatives,. 
j  I 

i Thus from the field equations B does ajpear to play the role of 
!: 
i the gravitational "constant. l 1  However, this i s  not sufficient to 

!, 
prove that $ will be the locally . measured. Newtonian gravitational .fi 

1 llconstant;lv (See VI-E, pages 41 1. ): . . , .  
I: .  . 

The extra function, +, introduces more.freedom in theinitial 

value or  boundary value problemthan is  available in general rela-  

tivity. There i s  some difficulty in eliminating %is freedom so ; 

as to obtain from the field equations a value o f 4  something like 
. . 

.  (XIII, pages 87  f .  ).
r  . . 

It i s  seen th+t the Einstein equation8 a re  approadhed-in the 

limit of large coupling con~ tan t  Cd (VII-D, 53 f . ) .  

The weak field approx i~a t ion  is carried out' to demonstrate 

the necessary weak field Einstein and Newtonian limit and to get 

some information about the relation between # and the locally 

measured gravitational "constbnt. I '  (VII-E,pages 55 f. ). 

C. Jordan's Work 

Field equations.very similar to those discussed above 



others .  Starting f rom equations obtained from his  five dimen- 

sional projective ''unified field theory" h e  studies general  types 

of Einstein-like f ie ld equations containing a function, 

which he seems  to in terpre t  a s  the gravitational cooatant (VIII-B 

I pages 60 f .  ). However, he is not too thorough o r  c l ea r  in his  

I analysis of how mat t e r  contributes to  the field,equations, o r  
j 
1 what quantity associated with his "matter tensor1 '  i s  t o  be in- 

! 

i 
t e rp re ted .a s  inert ia l  m a s s .  It i s  to be emphasized that the intro- 

I. duction of inertial  mass i s  neceseary before any statements can r 
be made a b w t  what the locally measured gravitational l'conetant" 

i s .  ~ i e r z ~ O ' h a sa l s o  pointed out the ambiguities. invoived in  

Jordan1&treatment  of masg(VII1-E pages 64f. ) 

Others,  notably Just
2 1 

, have explicitly dealt with ma t t e r  

a s  a source in  the field squattone, and evaluated the  constants 

in  vacuum solutions in term.8 of in tegra ls  over I1mqtter1l variables.  

How these a r e  related to inert ia l  m a s s . i a  fiat c l e a r ,  however. 

The main difference* between this paper and the work of 

Jordan and other8 can be summarized  a s  follows (VIII-Gpages' 

66 f .  ). F i r s t ,  the field function is here  taken t o  be the rec ipro-  

cal  of the gravitational constant ra ther  than the constant i tself .  

Secondly, in this paper m a t t e r  i s  e x p l i ~ i t l y  kept in the theory in 

a way consistent with the 'weak equivalence principle. Finally,  

a locally measured  Newtonian gravitational constant is defined 

aod a n  attempt made to re la te  this to @ and through 4 and 

the f ield equation to the s t ruc ture  o f t h e  universe. 

20 M. F i e r z ,  Helv. Phys. Acta -29, 128 (1956). 

21 K. Jus t ,  2. Phys . ,  -140 524 (1955). 



D.  Infeld's Equations of Motion Through Second Order 

In order to get any indication a t  al l  of how matter con- 

tributes to the locally measured gravitational constant, it i s  

necessary to ca r ry  the equations of motion to second order at  
1 

1  least.  This was pointed out in  Pa r t  One pages 8 t o l 0 .  
i 

1  The method of 1nfeldZ2 has been chosen for this purpose. For 

the purpsses of this paper Infeldts matter tensor. vhich,is  a 

type of delta function, i s  taken to represent bodies whose sizes 

23
a r e  small compared to their separation. In integrating prod- 

ucts of functions-, such a s  the components of the  metric tensor 

with components of the matter  tensor,  the latter i s  supposed to 

act like a delta function except that it eliminates self contribu- 

tions, i. e .  , functions singular at  the origin of the delta func- 

tion (IX-B pages 69 f .  ) 

Actually, such integrals a r e  used only in two places. 

One i s  in the field equations where the components ofthe mat-  

t e r  tensors,  multiplied by components of the metric, appear 

as  sources. Hence, self terms can be assumed to be already '.'@
contained

24 
in the numbers such a s  ,U 5 5 which a re  de -

fined to be equal to these iqtegrals. Of course, it i s fur ther  

assumed that the f
'w 

appearing here correspond to the ob- 

served velocities of the bodies, s a  that there i s  really only one 

free pa rame te r f l  , in which to "absorb" self effects. This 

22  L. Infeld, Rev. Mod. Phys .'-29 398 (1957). 

23  See Pa r t  One page 18 where a similar restriction is used 

iq Papapetrou's method. 

24  See the relation between Papapetrou's mass "density" and 

the standard choice for fluid density, Par t  OneIV-D equa- 

tions 20) and 21), page 20. 



does not seem to be a strong assumption but merely indicates 

that in the large the body must act like a noespinning point 

particle. The second place where these integrals a re  en- 

countered is  in the equations of motion. The terms drop- 

ped a r e  self forces,  and their neglect corresponds to the a s -  

sumption that they. arebalanced by,. internal pressures or at  

11 
any rate do not contiibute to the observed gross motion of the 

I 

1. 
body. 

Of course the number, /l/ , introduced in terme of in- 

! tegrals of the matter tensor must be related to observed. 

mass. This is done by placing a small charge on the body 

and calculating i ts  equationof motion in an external field. 

Again self.effects due to the charge a re  neglected. The re-  

sult is that/ plays the role of inertial mass  (IX-C pages 71 f .  ). 

This is  directly comparable to the procedure employed in the 

. . case of Papapetrou's method (IV-E pages 21 f .  ). 

Finally, the geodesic equations of motion of a test par- 

ticle through secondorder a r e  obtained. In the Einstein lim- 

i t  ( &= o ) these equations a re  identical to those obtained by 

Papapetrou. Further,  Infeld's metric and ~ a ~ a ~ e t r o ~ l s  dif-

fer  only in fourth order. To convert the coordinate descrip- 

I tion of the motion of the particles to proper units corresponding 

to physical measurement it is  only necessary to use the metric 

. up through third order. This is  so because the distances, vel- 

ocities and accelerations to be converted a re  contained only in 

combinations already of order 2 and the expressions for the ac-  

celerations a r e  correct only through order 4. Thus, in the 

Einstein limit at least,  the two methods give identical obser- 

vable results.  



This might also be expectedeven if &$0 . Hence 

it seems very likely that the fluid type mst ter teneor  of 

Papapetrou-Fock would give the same observable results 

as  the singularities of Infeld in the case of non-constant # . 

E.  Definition of Locally Measured 

Newtonian Gravitational Constant  

And Its Evaluation Through Second Order  

To apply these results to the calculation, of a locally 

observed Fewtonian gravitational "constant, ' I  i t  i s  necqssary 

to define this "constant" by describing, the method of measur-  

ing it.. As noted above, if i s  not sufficient to say that since in 

the field equations 9 seems to play a role similar to k 

in the Einstein case,  it will correspond (as K does in the 

Einstein case,  111-B page 11 ) to the result o f a  proper lo- 

cal Cavendish experiment. . . 

Firs t  of a l l ,  i t i s  assumed that a basic. unit of time (or  

length) 1s available which corresponds to the mathematical 

proper time (or lepgth) given by the metric and that the unit 

of length (or time) i s  obtained by the requirement that the ve- 

locity of light be one. The path of a light ray is  assumed to 

be a null geodesic. Further,  the physical measurement of 

inertial mass: is  assumed to be consiutent with the mathemati- 

cal one chosen either in the Infeld (IX page 68 f) or the Papa- 

petrou-Fock (IV pages 13 f )  method and physically defining 

the l 'maseesl '  obtained from their matter tensor. 

The actual definition of I(E , the effective gravitational 

constant, i s  then based on a comparison of the actual motion 



of  a tes t  particle, to that predicted on Newtqnian basis 

(X-B page 7 5 ) .  . T o  obtain this Newtonian l imi t  i t  i s  

necessary to assume that the tes t  particle and gravita- 

ting mass  are small.  Further to make  the experiment lo- 

cal and to  eliminate curvature e f f e c t s  they mus t  be brought 

close together. 

The  resul t ,  based on the equations of  motion through 

second order ,  i s  that the universe does contribute to K
E 

(X-B page 7 5 ) .  In fact ,  t o  f i rs t  order in  I< fm , 

i
1 

. . 

Einstein's arguments might well be used h e r e .  Namely, i f  

some o f  the universe ( s~w- I ) contributes t o  
k E 

, then 

I
all o f  it probably does. In particular, to  make the f i r s t  t e r m  

J k d ~ 

in 6 )  the result  of  a s u m  similar to  the second for the 

& w -
whole universe (where 5 5 = / ), ( a - a  ) must  be neg- 

II ative. 

I t  should also be noted that the "background value, I' 

ko , appearing i n  6 )  i s  -not the asymptotic value of 

that i n  the calculatioqs of  any local experiment 4 enters 

-L
i n  more  than one way. Not only does multiply the m a t -  

t e r  tensor but $ ale0 contributes additive t e rms  to  the " e f -

fective" matter tensor i n  the analogue of  the Einstein equations. 

The additive t e r m s ,  containing f i r s t  and second derivatives o f  

4 , arise f r o m  local matter i t s e l f .  Hence, any gravitating 

through the matter tensor and then through the t e r m s .  



43 

F. The Heckmann Solution And Three Standard Tests 

After obtaining some information from approximate solu- 

tions, the next step i s  to look for exact solutions. The most 

obvious place to look for these might be in the static epherical- 

25 
ly symmetric vacuum case. Jordan has stated such a solu- 

tion, for his field equations in Schwarzschild like coordinates, 

due to Heckman. In the vacuum, these field equations a r e  for- -
identical with those considered in this paper, requiring 

only the replacement of , ,h by ,d , Ld . Hence this 

solution is valid here and use is  made of it to obtain the out- 

come of the three standard tests (XI-B page 78). 

However, care  must be taken in evaluating the constants 

in the vaauum solutions in terms of the inertial mass of the 

"eingularity." Jordan's procedure here is not clear and in 

any case ,  since his interpretation of mass and ~ ( n 4 )is  

different from that used in this paper, a revaluation i s  neces- 

'. sary  (XI-B page 78). 

G. Exact Spherically Symmetric  

Static Vacuum Solution in Isotropic Coordinates  

The Heckmann solution, while useful, is difficult to in- 

terpret  and analyze since to express $ and the metric com- 

ponents in terms of elementary functions a parametric repre- 

sentation must be used. Since the use of isotropic coordinates 

26
often simplifies situations in general relativity, Misner sug-

gested i t  might do so here also. This i s  in fact true. This 

25 P. Jordan, Ibid. -, p. 172  

26 C. W. Misner, Private Communication.  



1 

solution is  given in XII, pages 79 f .  ). The four "branches, 'I 

corresponding to different ranges .of the independent con- 

stants, a r e  restated together for convenience in XII-F,  

pages 85 f .  

H. Boundary Conditions 

The general isotropic solution mentioned above contains 

essentially three independent constants (in addition to two trivial 

ones associated with space and time units). Matching to an 

interior solution (which has yet to be obtained in exactform).  

would eliminate two of them. The third, which simply multi- 

plies $ , would still be undetermined, however. 

This indeterminacy is  an essential obstacle. to the program 

of obtaining the gravitational "constant" from the structure of 

the universe. 

27
To overcome this difficulty Dicke has suggested that 

boundary conditions be imposed on 9 . For no matter at  

infinity he suggests fA2$. 'V 5 &
This is  motivated by 

so that in the absence of matter,$*^. Further,  i t h a s  been 

conjectured that a Mach's principle might indicate that in the 

absence of matter the field equations should become meaning- 

less.  Equation VII-8) page 51, shows that $=o wodd render 

the field equations indeterminate, 

The simplest type of universe in which to study this prob- 

lem is  that containing only a static, spherically symmetric 

mass shell. The analogous potential problem for this case in 

electrostatics will be considered (XIII-B, page 87). It i s  

found that the potential for this problem is  not fully determined 

27 R. H. Dicke, Private Communications. 



in terms of the shell parameters. There is the well known 

additive constant available. In electrostatics this can be 

eliminated by requiring that the potential be zero at  infinity. 

If this is done, the potential inside will be a constant pro- 

i portional to the total charge of the shell divided by i ts  radius. 

! This is  precisely the result desired for the scalar field rela- i 
I 

ted to the gravitational constant. (See I-B, pages 1 f ,  :, VI-B 

pages 36f.). 

Since in the weak field case,  to lowest order,  @ does 

satisfy a flat space Poisson equation it might be thought that 

these electrostatic results could be directly carried over. 

However, 'this i s  found not to be true. Essentially, the diffi- 

culty is that $*Oat infinity is inconsietent with the weak 

field assumptions since it requires 
K 

in violation of 

(XIII-C pages 89 f . ) .  

Hence exact solutions should be used. Thq specific 

problem studied in section XI11 pages 87f. is that in which 

the matter tensor is static spherically eymmetric, diagonal 

and vanishes outside a range K, < A < pa apart from rela- 

tively small masses near A = 0. The solutions ineide, 

A < I? ,  , and outside, h >Ra ,will be of the form given in 

XII-F pages 85 f. . Hence there will be six independent 

constants, three inside and three outside. The masses near 

the origin and the shell itself would be expected to determine 

five of these six constants. To eliminate the remaining one 

consider the boundary condition +-> 0 as /1 3 OQ . A 

glance at  XII-F page e 85 f .  shows that this can only be satisfied f o r  

a choice of constants in the solution outside appropriate to 

type 111. This is  a particular solution so that the extra con- 

stant has been eliminated. Unfortunately, however, type 111 



requires positive , contradicting the positive contribution 

of local matter. (VI-E pages 41 f. ; X-B pages 75 f . ) .  

Actually, an analysis of this case shows that 

to zero as  r goes to infinity only if the trace of the s t ress  ten- 

sor is  negative (corresponding to P > 51P for a fluid) 

(XI11 pages 87 f .  ) . Nevertheless, an approximation to the 

behav i~ r  of an interior solution will be made(XII1-H pages 9 6 f . )  

and the resultant determination of the local KE near. the cen- 

ter  in terms of the rqdius, mass and total pressure of a 

spherical ball is estimated for this case, $b-+d as +a. 

The only other possibility is  q-30 as  J ) 3 , A ,  with 

a finite radius. At best this would result in a deter- 

mination of the local /:
E 

near the center in terms of the shell 

parameters and bO, this latter being still arbitrary. Even 

at  this it is  found that such a boundary condition would require 

pressure terms bigger than densities (XIII-F, page-8 93 f .  ). 

Of course in a more realistic universe the boundary con- 

dition would be 3 a cosmological solution. However,+ 
there i s  still some indeterminacy in the latter,  e.g. the initial 

vslue at  some time, Thus some global boundary condition 

(e.g. that space be closed) might still be needed. Although 

this problem will not be discussed in this paper, some infor- 

mation will be obtained about the cosmological solution in 

Section XIV pages 100 f .  

I. Cosmological Solution 

Section XIV pages 100f .  will contain a very brief discus- 

sion of the Friedman universe in general relativity and an 

evaluation of the Eddington numbers (VI-A pages 31 f. ) in 
',. 

,#$;I terms ~f them. 

I 



The analogous equations for the field case a r e  sta-  

ted and briefly investigated. Unfortunately, the exact general 

solutions a re  not available, although some important special 

solutions can be exhibited together with the associated Edding- 

ton numbers. 

The fact that W must be large (XI-B pages 78 f .  ) sug-

gests that some information about the general solution might be 

obtained by expanding i t  in a ser ies  in & . The f i rs t  few 

terms and the associated Eddington numbers fail to simultaneous 

ly satisfy all of Dirac's conjectures 

Thus the present state of the cosmological problem is  highly 

unsatisfactory and will require much more study. 

The lowest order effects uf a slowly varying gravitation- 

a l  !'constantu on planetary orbits i s  obtained in XIV-0, pages 122f. 

J . Conservation Laws 

The field equations VII-B pages 49f. being essentially 

Einstein equations with modified matter tensor, a first attempt 

to obtain a conservation law might be based on the procedure 

used in the Einstein case. This yields a coneerved quantity, 

giving a total "mass" expressed in length units and correepond- 

ing to some sort  of average gravitational l'constant" times mass .  

The result, for the static spherically symmetric case is a num- 

ber proportional to the "gravitating radius" of the singularity 

'~':., 
,.A;. .., (XV-B pages 124 f . ) .  



Another method would be to apply the canonical procedure 

directly to the variational principle. This proves too unwieldy, 

however. (XV-C, pages 127f.). 

I 

Finally, a conservation law giving a total "mass" in units of 

I mass can be obtained by writing the conserved affine tensor a s  the 

divergence of an antisymmetric affine tensor. The result is a 

number proportional to the "gravitating radius" times the asymptotic 

value of . (XV-D, pates 128 f. ). 

VII. $ 
A. Intsoduction-Criteria 

The possibility of a varying gravitational l'constantll has been 
28 

discussed by Dirac , JordanZ9, and particularly with respect to 

3 0  
Mach's principle by Dicke . The idea i s  to weaken the strong 

principle of equivalence through the effective gravitational constant. 

As noted in P a r t  One 111-B, page 11, the standard interpretation of 

general relativity relates the gravitational constant entering the field 

equation with the locally measured Newtonian constant in an unchange- 

able manner. The moat straightforward approach to an alteration 

of this sesult i s  thus to relate the gravitational "constant" entering 

the field equations to a field quantity determined by the mass distribu- 

tion in the univerqe. The object of P a r t  Two is  to describe and par- 

tially analyze such a formalism. 

2 8  P. A. M, Dirac, Ibid. -
29 P. Jordan, Ibid, -
30 R. H. Dicke, Ibid. -



In choosing a variational principle violating the strong 

principle of equivalence by the introduction of a varying 

gravitational "constant," i t  seems desirable to satisfy a t  

least  two conditions. F i r s t ,  the variational principle must  

be s imilar  to the standard Einstein principle, In other words, 

since the Einstein equations do agree with the observed data 

fairly well, any extension of the theory might be expected to 

be formally aimilar.  Second, the variational principle must  

be consistent with the weak principle of equivalence which i s  

just a generalization of the resul t s  of the EBtvds experiment. 

To satisfy this second condition i t  will be required that 

the operational definition of inertial  m a s s  be prescribed in 

a manner formally independent of the s tructure of the universe. 

The s t r e s s  tengor of ponderable matter  will be identified for-  

mally and interpretatively with that of general relativity. For  

example, the equation of a tes t  particle mus t  be a geodesic 

and a procedure for  obtaining an inertial  m a s s  for  given mat- 

t e r  Lagrangian or  s t r e s s  tensor such a s  in  IV can st i l l  be 

used. Clearly, however, the gravitational determination of 

mase feasible in  general  relativity and discussed in P a r t  One 

must  be excluded here .  

B. V ' 

Expressing the standard variational principle a s  

with L_ the mat ter  Lagrangian, i t  is obvious that the 

simple replacement of /( by a variable would violate the 

above requirements,  since the matter  equations would be 



formally altered. However, division by k yields an  equa- 

tion emenable to such a substitution. F o r  this purpose, 

*F@], with F some functional of a field, 9 , taken 

he re  to be a sca la r ,  appears  a s  the obvious and simplest 

choice so that the total variational principle will be t akes  a s  

with LI some Lagrangian for 4 . The requirement thut 

the field equation for # be second order  gives 

3 )  L$= l (4
4 

Apart f rom this,  there seem to be few restrictions on 

If F@)=# , the standard choice 

while giving the wave equation for  with R a s  source,  ye- 

quires a dimensional coupling constant, w . On the other 

hand, if La i s  taken homogeneous of degree two in %Nand  

degree one i n  , $, the coupling constant i s  dimensionless and 

if in particular,  

the field equations for  reduce to the wave equation with 

the t race  of the mat ter  tensor  for  source. The variational 



principle will be thus taken to be 

Here $ has the dimensions of reciprocal gravitational con- 

stant, i s  a dimensionless constant number. The field 

equations associated with this principle become 

in yrhich &,, signifies variation with reepect to pertinent 

matter variable, i s  the usual matter tensor and 
'I)) 

It is  immediately clear that 8) and 9) a r e  equivalent to 8) and 

11) I ~v(3~-3)~4=-~.
T z  

nI ,/n, J m /W7 

The verification of the conservation equation 

i s  obtained from 8) and 9) by straightforward calculation 



using the Bianchi identities 

and 

C .  Initial and Boundary Value Data; 
7 , .  

Exceptional Case ,$SO 

The study of the existence of solutions and the initial 

1 .   value problem for these equations i s  analogous to that for 

the Einstein set.  Iri fact,  i f  $#o , dividing 8) by $ yields 

the Einstein equations with modified matter tensor. Further, 

11) i s  independent of $.he second derivatives of the metric 

tensor. Hence, appropriate initial value da ta  would consist 

in the values of , and their f i r s t  narmal deriva- 
8.16 ' 

tives on a three-sunface (with non-null normal), together 

vith the necessany quantities for , all restricted to r#fl 
satisfy the '& ?''pet of 8) ,  

Thus considerably more data a t  the initial time is  

needed t~ specify the future course of a system than in gen-

eral  relativity. In fact, two functions must  be measured 

everywhere, the value of the gravitational "constant, " which 

could only be a constant (but arbitrary) number in general 

relativity and its f irst  time denivatiye, The physical sig- 

nificance of this las t  function i s  rather hard to grasp and 



there is no analogue for i t  in general relativity. This ex- 

t r a  freedom must somehow be eliminated in any attempt to 

determine the gravitational constant from the mass distri- 

bution of the universe in a way consistent with Dirac's 

conjecture (see Section VI-A and B pages 31 f .  ), 

The obvious candidate would be a boundary condition $+ 0 
outside all matter .  This will be considered in Section XIII. 

pages 87f. 

On the other hand, if  @ is zero the left side of 8) be-

comes zero so  that there is no determination of the second 

derivatives of the metric tensor. In other words, the field 

equations break down in this case. Interpreting $ = zero 

over a region, from '&23,a s  an indication of no net 

influence of matter  in this region, this result might suggest 

that in the absence of matter the field equations a re  indeter- 

minate. This has been mentioned as a possible statement 

of a Mach's Principle. 

D. Einstein Equation for Large W 

At f i rs t  glance, it appears that the Einstein equations 

a re  approximated in some sense for large Lc) , since 11) 

i s  consistent with constant and this last  limit in- +a 
serted in 8) gives the Einstein equations. In  fact, setting 

f = constant + k , the equatione a r e  consistent with 
W 

lim %$E.001lim !I? D , while the difference between 8) 
u+- w-3- w 
and the Einstein equations a re  of order 2 in this case. 

W 

However, i t  would not be correct to say that these equations 



effectively rendered the equations less stringent in their 

determination of the metric and matter tensors. As a 

counter exam~le .  it is eaailv observed that the set 

is  a solutlon to the equations 8) and 9). On the other hand, 

for fixed and L d  , it is clear that 15) cannot be a r -  

bitrarily closely approximated over a neighborhood by a 

solution to the Einstein equations. However, the above dis-

cuesion might be taken a s  an indication of the converse, 

namely, that any solution of the Einstein equations, over a 

compact neighborhood, can be arbitrarily closely approxi- 

mated by a solution to the extended set f o r  sufficiently 

large W . 
Later comparison (XI, pages 7 7 f .  ) o f  perihelion 

rotations with Einstein results will require 

16) / m /  2 I0 

Further, using $6 b IS? i t  would seem likely that the 

addition of neighboring masses might increase 4 . 
However, in VII-E,pages 55f. below, i t  will be seen 

that this requires 

Thus W ,C - 10 seems to be the reasonable range. 



E. Weak Field Approximations 

To obtain the approximate linearized equatione, set 

18) ' k s  C o n s t a n t  of
J 

d lnehr,ons L M'I 

Retaining gnly terms linear in ), and the field equa- 

tionel reduce to 

#.W
11"'. ( ~ ~ - 3 ) qy ' . ? ' ?  7' ,4-9. . 

' J.. /m 
. . 

Where 

The co~rdinate conditions = taare compatible 

with ?a), Ba), l l a )  since the "small" trqnsformation 

+>a"Itvq with - /a leads to 8 

system in which they are satisfied. In fact, the eolut i~n 

can be specified as  

I 



with 

and satisfying l l a ) .  Hence the metric tensor is the 

sum of two parts ,  \Y . with 
0 

&b 
qatisfying the usual Einstein equation8 and coordinate 

conditions. Thus, the radial acceleration of a test par- 

ticle at distance r from a single emall mass m i s  

These equations, apart from demonstrating the required 

Newtonian limit,  provide an interpretation of U )  in 
J 

terms of the observed effective gravitational constant, KO , 
and also illustrate the manner in which the Einstein limit 

can be approached for large . In this approximation, 

qpalitative differences with the Einstein results a re  con- 

tained only in velocity effects. Thus, for example, for a 

small kravifating mass  density with velocity , 
L g d kV '4 , a .low moving test particle at  'y fol-

lows the geodesic approximately given by 



rotating with small angular velocity d , with respect 

to a system in which the metric is  asymptotically Minkow- 

skian, the "centrifugal force" induced on a test particle of 

M ~mmass m is  the same as  in the Einstein case, i . e . ,  

However, in terms of the obeerved kg this is *Y*)f l k  marh 

Thus even in f i rs t  approximation the extended set  yields a 

relation between " ind~~ced  inertial" and gravitational ef- 

fects quantitatively different from the Einstein set. How-

ever, as  in the Einstein case ,  i t  is obviously inadequate 

VIII. Jordan'* Work 

A,. Introduction: Field Equations; 

Pauli Transformation 

~ o r d a n ~ land his coworkers have done a considerable 

amount of work on modificatione of Einstein theory very 

similar to that discussed in section VII, pages 48 f .  

His book contains, in addition to standard Einstein theory, 

an exposition of a five dimensional projective "unified field 

theory" which offers a variational principle containing a 

31 P ,  Jordan, Ibid.-



-- - 

"varying gravitational constant" to  be determined by the field equations. 

After briefly discussing this Jordan re s t r i c t s  himself to the four dimen- 

sional f o r m  of the variational principle. The main form he uses  in  his 

3 2
book fo r  this is 

33
leading to the field equations 

He inser t s  other "matter1'  in the same way a s  the electromagnetic s t r e s s  

tensor  E enters  but claims that he need consider only the c a s e  where 
Dfo 

3 2  .P.Jordan, Ibid. , p. 164. Here and in  the following Jordan 's  qota- 
7  

tion and metr ic  signature will be replaced by those chosen i n  this 

33. P.Jordan,  Ibid. -, p.  165, 



the time average of the Lagrange density for matter (corresponding 

to F ~ ~ F ~ ~ ) ,vaniehes. This i s  indeed satisfied for the case of 
34

incoherent waves. With this condition, then, he writes for the  
35 

field equations in the presence of matter 

'I 
where LB is  the "total energy tensor. l1radiation plus matter. 

/-r*
He then remarks that i f  / = 0 ,  4)  and 5) a re  formally in- 

0 

variant under a "Pauli conformal transformation. Specifically, 

i f  d is  a constant not equal to one, the replacements 

' 'g$$ leave 4) and 5) formally unchanged, provided 
. f ,/ = 
d 

0. 

34 P. Jordan, Ibid., - p. 96, 

. , 35 P. Jordan, Ibid., P. 165.-



8. The Meaning of and 

I 

I 

i 

i 

F r o m  5), i t  might indeed seem that plays the role of gra-  

vitational constant, " since it multiplies the "total energy tensor,  ' I  

r;l . However, zp 16 not conserved in general.  In fact, 
36 

-

Later ,  he pivee some hint of hie interpretation of l&& by making 

the l 'Eddin&t~n-Pauli" postuLate: "That tensor for which 
q n A Q

the conservation law (b( / 2 , ~ ~ .0 :iivalid, ir to bc interpreted 
3 7

a s  f h ~ m a t t e r  tensor.  "I? In the lightof this 7 )  would require th8t 

T" be takexi a s  the "matter tensor." Hence, on the right side 

of 5) the "matter tensor" is multiplied by x - ~instead of kl , i. e ,  , 

not 
, , plays the role of the "g~avitat ional  constant, " J o r -

dan does not discuss this  problem in detail in his  book although he 

does seem t o  be aware of it.
38 

C. The Heckrnann Solution; 

Three Standard Tes ts  

He then proceeds to derive and investigate the "Heckmann so- 

lution, " the static spherically symmetric vacuum ( y--0 ) 

36  P. Jordan, Ibid -. p. 167.  

38 P. Jordan,  Ibid., - p. 172.  . , 

i 



I 

solution to 4) and 5) in Schwarzschild type coordinates. The form of 

this solution i s  quite complicated and only a parametric representa- 

tion of it can be given in terms of elementary functions. That i s ,  

the coordinate radius and metric components a re  given as functioqs 

of the same parameter. This wolution has essentially three free con- 

stants. , no, Hd . For certam ranges of these constants this 

solution behaves analogously to the Schwarzschild solution for large 

with Mb being the asymptotic value of . He introduces 

a "gravitational radiur" m such that 

A comparison of this with the corresponding expansion of the Heck- 

mann solution places one condition and /lo in terms of m.  

Noticing that 4) and 5) require 

he asserts  that in the weak field approximation 

Apparently he aseumes that this "m" is the same as  that introduced 

in (and defined by) 8 ) .  However, it i s  not at  all obvious that the field 

fined in 8). Nevertheless, he compares 10) with the corresponding 

expansion of the Heckmann solution to evaluate PDin terms of i2rn1t. 



I 

Using this evaluation of Po and AO he proceeds to investi- 

gate the three standard tests: red shift, light deflection, and perihe- 

lion rotation. He finds that the Einstein results are approached for 

large ]g/ . 

D. Jordanle Cosmology 

He then investigates the analogue of the Friedmann coemological 

solution. He uses for the metric and "matter tensor" 
39 

:ps;):
i  

p = p c t ,  ; p =  PO), ~= ~ f t ) .  
t 

where &' represents the usual space metric of curvature - 1 or 0. 

40
He presents an analysis (including numerical calculations) of some 

of the mathematice involved in solving 'the field equations for such a 

univeree but does not clarify the physical interpretation of either X 
or the "mass density" P . Most of the discussion is  restricted to 

positive 3 . This i s  due to the conjecture 

39  Ibid-. Jordan,P. , p. 186. 

40 F .  Jordan, Ibid., pp. 196-207.- 

i 



and the form 101 of the weak field solution. If the apace metric 

corresponds to positive unit curvature, he claims41 that if $>a, 

ae f+w all solutions with P=Oapproaoh a epecial linear eolution 

This solution eeemi to fit Dirac's K ".' conjecture. Unfortunately, 

however, i t  does not seem that Jordan's would appear a s  the real  

4 2 
locally measured Newtonian gravitational constapt.. 

He a l s ~  includes a study of the non-static spherically symmetric 

vacuum solution since the Birkhoff theorem i s  not applicable to 4) 

The book concludes with a rather extended discussion of some of 

the possible geological and astronomical coneequences of the theory. 

41  P. Jordan, Ibid., p. 200.-
42  See the discussion in VIII-B, page 60 above a s  well as  that of 

Fierz  VIII-E, page 64f. 



E. Fierz's Critique 

43
Fierz makes use of the invariance of the field equations 

under the Pauli conformal transformation to point out some physical 

ambiguities in Jordan's results. He asserts  that it i s  necessary to 

explicitly put a "matter" term in the variational principle in such a 

way as to give a "matter tensor'' having non-zero trace. This then 

destroys invariance under the Pauli transformation. 

Fierz  writes Jordan's action a5 

where cf , y~= constant, 

To this he adds the matter action 

where is  an arbit iary function of )'( . He then makes the impor- 

tant postulate that a mags point ehould follow a geodeeic. For arbitrary 

h and variable )'( this can not be satisfied if the' g M V i n l 5 )  is  -
interpreted as  the observed metric. Rather, $ y  3 fi(x))

a$# must 

be taken a s  the meaningful metric. Putting this into the remaining 

action for the gravitational, electromagnetic and fields gives a 

slightly modified action i n  which j q L  appears in the role of gra-  

vitational "constant." Fierz  notes only two cases. If h ( ~ ) =  X*
L 

43 M. Fierz, Ibid. - Jordan has taken note of Fierz 's  paper. See 

Z.  Phye., 1 1 2  (1959). 



standard Einstein theory resul ts .  If / , X 'l seems to be 

the gravitational "constant. ' I  The resultant total action i s  

F i e r s  shows the same resul ts  hold for a wave mechanical action 
I 

for  mat ter .  

F. Extension and Amplification of Jordan Theory 

Others have investigated some of the questions associated with 

Jordan's exposition. In part icular ,  ~ u s t ~ ~has added a mat te r  La- 

grangian, calculated the torresponding s t r e s s  tensor  to be added to 

the field equations, and expressed the constants in the Heckrnann so-  

lution in. te rms of space integrals over the masses  of functions con- 

taining composents of their  s t r e s s  tensor,  metr ic  tensor ,  and . 
He then calculates the equations of planetary motion in t e rms  of these 

constants. 
45

Later he considers  cosmology in  view of this work. 

46
Ludwig and Just analyze the resulting equations of motion, which do 

not describe a geodesic. This  is due to the fact that what they call the 

"matter" tensor i s  not conserved. This they regard  a s  favorable and 

discard a variational principle like 16) o r  VII-6) page 51 since i t  

leads to no "entstehung von neuer  Materie. "47 Jus t  
48 

further discusses 

i 

44 K. Jus t ,  Z.  Phys . ,  140 524 (1955). - i 
! 
i 

45. K. Jus t ,  2. Phys . ,  140 648 (1955). Z.  P h y s . ,  141592 (1955). 

46 G. Ludwig andK.  Jus t ,  2. P h y s . ,  143 472 (1955). -
47 G. .Ludwig and K .  .Just Ibid.' '- . 

48 K .  Jus t ,  Z.  Phys . ,  144411 (1956). -144 648 (1956). 
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the evaluation of the constants in the Heckmann solution in terms of 

the "matter" tensor, and in what ranges the available parameters 

must lie in order not to contradict observations such as  planetary 

motions and Egtvzs experiment. 

G. Comparison of Work of This Paper to That of Jordan 

In this paper, the functionof interest,  9 , corresponds to 

the reciprocal of the gravitational "constant" rather than the gravi- 

tational "constant" itgelf as  chosen by Jordan. Reasons for this 

choice were set forth in VI-B, page 36 f .  It is  $ which has units 

of ML-I and might be expected to satisfy an inhomogeneous wave 

equation with matter a s  s ~ u r c e  , , 

and field equations. Further,, this i s  done in such a way a s  to leave 

the actions aseociated with matter and electromagnetic fields un-

changed so that the equations satisfied by the matter variables aTe. 

formally identical with thobe ip staadard general relativity. In 

particular, the matter tensor i s  conserved aqd a test particle fol- 

lows a geodesic. Hence, while the strong principle of equivalence 

i e  violated, the weak principle is  exactly satisfied so that, for ex- 

ample, a null result i s  predicted in the Egtv8s experiment. Further 

standard electromagnetic theory i s  left unchanged so that the iner- 

tial determination of mass in charge-time units is  identical with 

that in general relativity. 49 This is  done for the Infeld source ten- 

sor used in determining equations of motion in IX-Cpages. 71 f.: below. 

In other words, an attempt is made to associate a physically obser- 

vable number, inertial mass ,  with the formal "stress tensor of 

49 See IV-E, pages 21 fl 



I matter"  put into the field equations. The method chosen, based on 

conserved electric charge and constant dielectric "constant, " might 

50
be open to discussion, but is sufficient for the purposes of this 

paper.  

I
Fur ther  in this paper an attempt is made to relate to the 

actually measured  Newtonian gravitational constant ( see  X pages 74f .) .  

I t  is not sllfficient to  simply say  that since enters the field equa- 

tions analogously to K in Einstein equations i t  is to be identified 

with the locally measured gravitational constant. 

A comparison of the vacuum field equations VII-8) and 9) page 51 

with those of Jordan 4) and 5) show that they a r e  formally identical 

if $= and is replaced by . ~ e n c ethe solutions, while 
. 

formally identical, a r e  physically very different unless Jordan's % 
i s  taken to be the reciprocal  of the gravitational constant. In this pa- 

p e r  the solution to VII-8) and 9) page 51 in the time-independent 

spherically symmetric  vacuum case will be given in isotropic coor- 

dinates (See XI1 pagm 7 4 ) .  Because of the formal identity of VII-8) 

and 9) page 51 with 4) and 5) the geometry of this solution is the 

same a s  that for the Hkckmann solution but in isotropic coordinates 

the metr ic  components and can be directly given in t e rms  of e le-  

mentary functions of the coordinate radius.  This solution i s  then 

applied to the problem of boundary conditions on 9 (See XI11 pages 87 f. ). 

The cosmological equations considered in this paper a r e  again 

formally identical with those of Jordan'e.  However, the replace- 
I.  

ments of by X and by K P  necessary to achieve this 

radically a l t e r  the physical meaning and interpretation of results.  

Fur ther ,  Jordan i s  largely concerned with solutions associated with 

50  In addition to Jordan's  work s e e  a l so  R .  H. Dicke, Rev. Mod. 

Phys . ,  2 363 (1957), Science, 129 621 (1959), Am. J .  Phys . ,  

28 344 (1960). 



ranges of 3 (or Ld ) greater than zero since he wants to 

be a positive sum of terms like  -m . On the other hand, in this  
r +1 

paper this is  a property of (which i s  his ) so that W (0  is  

the range of most probable interest here. 

Also, in addition to several exact special solutions, this paper 

contains the f i rs t  few terms of an expansion of the cosmological solu- 

tion and associated quantities in powers of & , XIV pages 100 f .  

This seems appropriate since, to fit observations, the theory must 

give predictions fairly close to those of the Einstein theory. This 

requires large W , e. g. / w /  2 / a  (See VII-D pages 53 f . )  

IX. Infeld's Approximation Procedure 

A. Introduction: Assumptions 

In order to obtain a better picture of how the strong principle of 

equivalence is  violated by the introduction of $ , consider the many 
51

body problem through second approximation. This is required to 

obtain the effect of matter on the physically meaaured gravitational 

constant as  defined in X page 74f.  below. The procedure adopted is 

52
that of Infeld , neglecting internal particle structure. 

It i s  obviously sufficient to assume the "zeroth" approximation 

of 4 as the reciprocal of a constant of the same order of magnitude 

a s  the usual gravitational constant in order to stay "near" an Einstein 

solution. Hence, set  



I 

1 

with the hILI expanded 

and assume time differentiation to increase order by one. 

B. Infeldts b Function 

The choice of the matter tensor in  this method is  a special . 

type of 6\ function which is  assumed to be already renormalized to 

contain all self interaction effects for spherically s m m e t r i c  point 

particles. More precisely, i f  the path of the particle ig 2% xVh) 
f o r  some parameter 2 , and if $ i s  some quantity expandable 

about 9%~'b)a s  

where 

then the matter tensor y i s  assumed to have the following properties 



and 

where d is any pne form, 0- is any space-like surface of normal n 
4 'w- J p

intersecting the path 2%rlj)only at F(J~), f s . /u(/\o) i r  a 

scalar and a normalization factor. If does not intersect 

[x= , the sight hand eide would be zero. This is simply 

an invariant formulation of Infeld's definition, showing immediately 

f=fiuthat mu.t transform as  a tensor. For the proper time 

along the path is defined by 

Assume then that N(YJ= / for all Y , From the conservation equa- 

n = ' R
tions / = 0 lt i s  a straightforward matter to verify 

4'1 

motion for a free particle. 

As discussed in the introduction, VI-D, page 39f , ,  use of 

Infeldls 5 function can be regarded mainly as a computational con- 

venience. Of course, it does entail an assumption that the masses 

have an overall point particle like behavior. There is every reason 



I 

to  believe that the Papapetrou-Fock method, corresponding to 

extended "fluid" bodies, would give the same  resul t  for the equa- 

tion of motion of centers  of "mass" a s  the infeld procedure. In 

fact,  these two methods do give the s a m e  observable resul ts  in 

the Einstein case. The introduction of 4 change8 this by requi r -  

ing a n  evaluation of the integral of the t r ace  of the s t r e s s  teneor 

of the m a s s .  This number ia the same for both methods, m for 

Papapetrou-Fock (IV-D eq. 24 page 21) a n d / /  for Infeld. Both 

m a n d /  turn out to be equal to  the observed inertial  m a s s  in 

charge unite. (IV-E page 21 f .  , and IX-C pages 71 f. ) 

C .  Relation of to Inertial  Mass 

In o rde r  to r e l a t e p  to an inert ia l  m a s s ,  assume that the 

application of a charge e to the part ic le  is represented by a 

current  deneity & '(2) 

and 

Thus the total  flux produced by the part ic le  i s  



In the presence of a field PP,coneervation of total s tress tensor 

yields 

On integrating both sides over 2
0 

= constant this gives 

Hence p must be identified with the observed inertial mass since 

al l  the fields, and Gyoccurring in the equation a re  "external. 
'2.u 

D. Evaluation of Metric and Equations of Motion 

Let the particles be labeled by a ,  b, c . . . . and their positions 

i i i  ' & f - ' = , b ,  c . . . .. ( i = l ,  2, 3;*= $ ) 

The following resqlts a re  found 

a u - ua a  



where 

As a check it i s  observed that in the l imit#+& , these solutions 

approach those given by Infeld. After lengthy but straightforward 

th 
calculation the coordinate acceleration of the a particle is  found 

to be given in the expression 

' I w - a / * a ,  3,' hPb ".'\aL 

. . .  where 



X. Definition of Local Gravitational "Constant1' 

I A. Introduction: Definition of )(E 

The defisition of local gravitational "constant" will be based 

on the comparison of the relative motion of two small bodies to 

that predicted by a Newtonian theory of gravity. As pointed out in 

I11 pages l O f . ,  motion must be invariantly described to correspond 

to a real  experimental result. 

I Consider now the measurement of the local effective gravita- 

tional constant k
E 

defined a s  follows. 

Here dp is  the proper relative radical asceleration 

test particle instantaneously a t  r e s t  at  a proper d i~ tance / )~ (a long  

df: 0)from a spherically symmetric inertial rnaes/CI in a local 

time orthogonal coordinate system. Of course, in defining proper 

distances, the siqgularity must be replaced by an extended mass.  

The above definition is  also seen to be equivalent to that in which f l
P 

is  defined as  one half the proper time (on the test particle) : of flight 

of a light ray to the gravitating mass  and back with no coordinate 

conditions. 

This definition of /:
E 

is  chosen for the following reasons. 

Since (r#pb=Dmay not be zero (the entire coordinate system 

may be accelerating) and only the change in Ap due t o f l  i s  de- 

'h is  used. Aka, i t  is  evaluated at,U=O since only the 

Newtonian limit is  desired and spurious effects due to the interaction 

of ,bf with background matter a r e  to be eliminated. The limit, 

A, 3 0 , is chosen to eliminate background curvature effects. 



,& particle to f irst  order in 

Evaluation of KE from Equations of Motion: An Example 

~ o r / U binstantaneously a t  res t  a t  the origin with the res t  of 

the universe at rest  and 5 4% L ,  the acceleration of a test 
A ,,

i s  from IX-14)page 73
6  

where 

53
Hence 

Clearly as  w , /tE36 %'K, independent of M, t? as  in 

the Einstein theory. This might have been anticipated from first  

order approximation theory. The effect of M in local calculations i s  

to replace the boundary value 
/ 

by 



however, this result plainly demonstrates the violation of the 

strong principle pf equivalence: the effect of the res t  of the uni- 

verse on local, proper, gravitational experiments cannot even 

approximately be "transformed" away. Further,  this result is 

independent of the velocities of /U , aqd the individual particles 
6  

in the res t  of the universe. In fact, a glance at  IX-14) page 73 
*, 

shows that the only velocity terms contributing to q a re  those 

involving the velocities of /U and the test particle, and further, 
b 

since these a re  to be instantaneously equal, a re  independent of UI . 

A direct calculation shows that they a r e  precisely the terms that 

would appear in a Lorentz transformation (after transforming the 
7 

background metric to the Minkowskian) of the relations between 

acceleration and distance for both gravitating and test  particle 

instantaneously at  res t .  In particular, if all  the velocities a re  the 

through order v 2 and 

As an example, the maximum variation of KE measured on 

earth due to its varying distance from the sun would be of order 



XI. The Heckmann Solution and Three Standard Tests 

A. Introduction: Statement of Solution 

The analogue of the Schwarzschild exterior solution has been 

given by Heckmann -et. -al. 54 for the equations VII-8)and 9) page 51, 

Their equations a r e  formally identical with this set  in  the case = 
*P 

With 

1) 

the result8 a re  

w- "r
1. 

.=p* ' e -
J 

2) r
a"/_e - , $ + ~ ) 7 ~ '- 6  - qr-Ya 

d =  47"  
with y a free parameter, . . 

and % ,4 , Ad independent constants. A thorough examination 
5 5  

of these functions can be found in Jordan , and only a few illustra- 

tive examples considered here.  since/ for either Y->(/)J~.
1. 

or  ?%o , e 
a &

-+either (,yeor 0. 
A*-

54 P. Jordan, Ibid. -
55 P. Jordan, Ibid. -



B. Approximate Evaluation of Constants and Three Standard Tests 

Restricting to the range /<Y<oo , for large , a pow- 
u 

e r  expansion in terms of r /  gives to f irst  order in I - /  the metric 

Hence, comparison with the approximate iolutions to VII-Ba), l l a )  

gives 

Thus the deflection of a light ray (null geodesic) passing at distance 4 
from mass  m is  %(I+&) The fractional difference with re6 -

pect to the Einstein value is  -I 
Since the f O 0  component of 

aw-u 
the metric tensor i s  the same a s  in the Einstein case through f i rs t  

approximation, the gravitational red shift i s  approximately unchanged. 

Further,  the approximate path of a planet about mass m is  given by 

where Ps./,2'
t) = constant. Hence the rotation of the orbit per period 

a the fractional difference with respect to the Ein- 
is3@$%+  
stein value being 

3w -6 , This demonstrates the approach to the  

Einstein results for lange .Ld .  
If ew approaches zero for /1 -39.. that i s ,  r-)0 ,  clearly  

the range 0< y< / alone i s  inappropriate for //1/< since i t   



excludes the region <Ao and covers the ~emaining space twice. 

h
FOSnegative 33 ,  if (-I)=/ then the range -9< i<- /  gives a r e -  

peat of the values for ,<'?'<- if F/)* i~ real ,  otherwire p 
2M 

will be complex, If (-1) 
16
# / ,  in general /I will be complex for 

negative Y .  
. .  . . 

. . 
. . .  

. .  . 
, . 

XII. Exact Spherically ~ ~ n i r h e t r i c  Static Vacuvm Solution 

in Isotropic Coordinates 

A. Metric and Field Equations 

The use of isotropic coordinates simplifies the metric, at 

least in the case 
rlLa= 0 . 

Consider then, 

w j t h  f = P f i ) ~ P = ~ h ), u,u"C---1 J' Ui=d /% ~ ' $ 0  

the field equations beoowe 

-
,-e 



B .   Differential Equations for the Vacuum: Type One Solution 

For the exterior case p = p = 0 , 6 )  yields 

while the Rob equation becomes equivalent to 

Thus 

From 8) and 10) then 
/ 

Setting # Z 9, 3)  becomes, using 9) and 1 1 )  



12) becomes, for 2') 0, 

Inaerting thia into 10) yields 

so that 
. . .. . 

, .> 

I 
17) 

I-e 
>(#-%). 

-
A J 

I 

' 

Aside from the trivial constants, qb . , fbur independent cpnstants 

& , A (or B), C,  D have been introduced. The constraint equation, 

4) i n  this case, may be expected to eliminate one of them. In fact, 

F it becomes 

which requires D = -1 
Hence the final solution is of the form (re-  

2 '  

defining constants &  
4 



C .   Approximate Evaluation of Constants 

From Weak Field Solution 

Setting do=Pa = 0 , an expansion in powers of B / r  yields in 

Cartesian coordinates 

goo= f B  ,. a ,  

?bo + 

Comparison with the weak field solutions yields 
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D. Solutions of Types Two and Three 

z 
The case <Ois easily considered by setting 2: $A, 

replacing 4 by /3p +fi)J, leaving C$, real and replacing B 

by $=j 8 . The net result i s  

Finally, the case 1) 
L 
= 0 requires, 

and from 1 2) 

or, if YK t /# 0 

29) y + c t / =  -a 
O / p - O (  

so  that 

30) /3 



From 10) 

I 4) requires 

I hence D = 0 .  

The solution is  thus 

a- I 6 3 )  H z % - - B 

co/,-c fj 

C - 1 /xFT 

w - a  
It should be noted that reality conditions require W 24 for 

this solution since u<$, cu 
makes either $bor q* complex. 

E. Spatial Inversion and Type Four Solution 

As in the Einstein case,  the transformation P +A-= 4.n 

+PI + @-.l=$@) 

e
m6)

->e 
a-1-- e 

* 
BCd f l@) 

e + e  - X  



leaves the form of the metric unchanged for/)+ 
L 
0 . For /) 

L
= D ,  

new metric i s  

f 

This i s  just the case ,  f t c f / =0,excluded in the derivation of 

33), 34). and 35) above. 

F. Summary 

For convenience the four branches of the solution will be 

tabulated below. Q/6 , G b ,  & , C and B are real constants 

having values in the indicated regions. 
t 
I &2= -eJq&>ca*{h1+ nZdR')t 





XIII. Boundary Conditions 

I  A. Introduction: Need for  Boundary Conditions 

In any attempt to in terpre t  a vacuum solution in t e r m s  of a 

r ea l  physical situation, it i s  necessa'ry to evaluate any constants 

appearing in the general vacuum solution in t e r m s  of observable 

parametera,  F o r  example, the, constants in  the type I isotropic 

solution were approximately obtained in XLI-C, pages 82 f. by 

comparison with the weak field solution. This la t ter  contained 

1  numbers such a s  m ,  referr ing to integrals  over mat ter  tensor  

components. Fur the r ,  m itself was related to an observed ine r -  

t ia l  m a s s  i n I V - E ,  pages 21 f . ,  IX-C, pages 71 f. There  was one 

other  number, however, which was not so  evaluated, namely, KO . 
This  was found to be the  asymptotic value of the locally measured  

In  general relativity, this  f reedom for  /(, is unimportant 

since ko must  be measured  only once. However, the main  pur-  

pose of introducing 4 was to determine the locally measured  

gravitational "constant" a s  completely as possible in t e r m s  of the 

s t ruc ture  of the universe.  

This  problem was  briefly discussed in  V1,-EX, pages 44 £. 

There  it was pointed out that a possible way of overcoming this 

difficulty might be the imposition of boundary conditions on $ . 

B. Electrostat ic  Analogue 

F r o m  Mach's Principle  it  might be expected that inert ia l  

reactions of a part ic le  a r e  in  some way related to the presence 

gnd propinquity of other  ma t t e r  in the universe (I-A, page 1 ) .  In 



universe were to decrease. Hence, ip a mass shell universe, 

inertial reactions in regions of space outside of the shell and 

distant from it might be small. In terms of a local gravitational 

constant, this might show up in a large K. Hence for such a 
L

universe 

1) I< -',a4 A d 

or equivalently 

+-> D d*e A->& 

Further. much a condition at  firmt glance S e e i s  to provide b N 

(I-B,pages 1 f . )  inside the shell. That this results from 4 -> 0 

a s  J) 3 i s  suggested by the' electrostatic analogue. Namely, 

given an equation of the form 

3 ) v'qL - p  

in flat space, the most general solution (regular at the origin) 

for the spherically symmetric case of an infinitesimally thin 

shell of total charge Q and radius R i 6  

t., " < R  

with a constant not determined by the mathematics of the 

problem. In electrostatics, the value of $g is physically unim- 

portant but in the case of the scalar field representing the recip- 

rocal of the gravitational constant, this value i s  directly measurable. 



Hence, it is necessary to  add some restriction to the mathematics. 

The natural method of doing ;his would be the addition of a boundary 

condition. The choice 430 as  h -->@ seems to be the least arbi- 

t rary ,  but more important, it yields a value of 6 = gRwhich 

would give, for the case of mass and the gravitational constant 

a relation apparently satisfied by the present universe. 

It is very important to notice, however, that there a re  really 

two types of boundary conditions @ -30. First ,  that $30 some-

where outside of all  matter and second, that $+d as  -*"I 
. . .  

, . Notice that the second completely determines to be 
, . 
. . while the f irst  o i ly  restr icts  to a range, 

,~. 
,. . 

6 )  0 s  &o - wRc Q 

In other word., if #+o as  +Ao . then 6 depends on no 
as  well as  M and R 

C. Weak Field General Relativistic Case 

An attempt to car ry  these arguments over to the general 

relativistic case leads to some difficulties. The space is cur- 

ved and the metric and acalar field will interact and influence 

each other. The fact that the above considerations cannot be 

directly carried over is suggested by the following order of 



-
magnitude argument for approximate solution to the equations 

relevant i t  seems reasonable to require that the lowest order met- 

ric be Minkowskianso that 9) becomes 

outeide $he -11. If k is the value of $ at the shell, the next 

order metric will vary nea r the  shell, like . ~ e n c efor the 
n 

approximation procedure to be valid 

On the other hand, # 3o as j, -3- requires 

contradicting 11). 



D. Description of the Model 

And Solutions Consistent with Boundary Conditions 

The model universe considered corresponds to a static  

spherically symmetric  m a s s  shell  between R and R together 
1 2 

with relatively smal l  m a s s e s  near  the origin.  

Specifically assume that a s  r approaches R f rom below,  
1'  

the me t r i c  components (in isotropic coordinates) and satisfy  

I t  should be emphaeiaed that 13) will be used only to deter- 

mine the signature of the field quantities and their  derivatives a t  R
1 

Fur ther  assume that there  i s  a diagonal ma t t e r  tensor 

vanishing outside R < r <  R and satisfying 
1 2 

14) 2 0  t 

J d NIj7@<0
d F  

Fur the r ,  in o rde r  to avoid l a rge  discrepancies in the deflection 

of light and perihelion rotation experiments,  assume Iw/bJso 

that, for example, 



Hence at R
1 

. . Which of t h e  solutions listed in XII-F might be used for j) > pa ? 

It i s  immediately clear that $ + ~ o u t e i d e  the shell eliminates type 11, 

i e .  0 . In fact, for type I1 varies a s  the exponential of a 

tan 
-1 

of r so that for all r ,  $ can only vary by a non-zero factor.. 
. . 

4
Further, since e i s  bounded, an arbitrarily large proper dis-

tance can be attained for sufficiently large r. In other words, prop-

. ,,, , 

e r  dietance goes to infinity with r.  

. . . . 

., .. Similar  remarks apply to type IV solution. Hence, 4 3 0  

outside the shell demands type I o r  111. This then rgquires a range  
' I 

' 

o f C a n d  L d  suchthat  (c$ / ja3  C i  

Further 4->O a s  h -+00 eliminates type I and thus speci-. 

fies C to be one of the roots 

These roots (and thus the solution) can be real only i f  W z  , 

This, however, contradicts positive contribution of local matter to 

$J, (I-B, pages 1f.  ; VI-B, pages 36f.i X-B, pages 75f). Never-

thelee a, this case will be further studied below (XIII-E), and found 

to contradict the requirements 14). 

The other choice, $-> 0 as  1,-3n0permits the uee of type one 

solutions, This means that the determination of @ inside the shell 



would depend on /70 a s  well a s  the shell parameters .  Actually, 

this solution i s  a l so  found to violate 14). 

E. Elimination of 2 W -3 > 0 
And Thus Type 111 Solution 

n 
-1-it follows that, for r >+,~ r o m & k= a J-3 

Hence a s  long a s  no singularit ies in the metr ic  occur 

ao that for 2 3 -3 3 0 ,  

In part icular ,  the choice of type I11 (since it requires  2 W  -3)  0 

and has a monotone $ ) for  the external solution i s  incompatible with 

the boundary c ~ n d i t i o n  ++o, provided no singularities o r  zeros of 

occur for R1< r < R2. 

F. Type I Solution 

Consider then w < -2 ,  22 > 0 

' I /
Adding XII-4) and XII-5, page 79) and settingz; d i / ,  yields 



It i s  easily seen that the right hand side of this equation is non-

negative. Thus, a t  every zero of 2 ,3 
/ 

20 so that since 718 at 

R1, 22 0 for I)>k,,  provided no singularities or zeros of @ 

occur between R and r ,  and r remains in the region where 3 i s  

single valued and 

1 

C' , Similarly, setting 2: f l/ in XU-3 page 79 

yields 

. . 

This time the right hand side is  non-positivg ( s k c e  .& (-2 ; 0/ $0 ), 
, .  . 

2
/ 

,(0 at every zero of X , ,  X S  a t  R1,so that Ts for %>HI , 

subject to continuity restrictions above. . .. 
;,, , . 
" .  In summary, for a reasonable distribution between R 1 and R 2' 

, ' .  

the initial conditions a t  R on the external solutions will require 
1  

/ 
/

$ 5  o J (kt p720 ,d 2 0I 

A -ae
at  R2. From the form iu[AT8]Y , it i~ easily seen that #* o 
outside the shell' requires 



Further, 

imply C J D  
eo that < 0 .  

/ /  

Under these reetrictions, W O and $ 5 0 are both 
/ ' 

fulfilled at R2. On the other hand df,& 2 0 requires 

Hence if B > 0 ,  )I < 0 and 

eo that 

On the other hand, from the d=finition of > , this reducee to 

Such a range for C will exist only if 1 + 2J 2 0, which is  inconsis- 

tent with W (  -2. 



I 

On the other hand, <0 , /) >0 , 27) yields 

which again i s  inconsistent with UJC - a . 

G. Summary 

.).  In summary, then, for a spherically symmetric mass  distribu- 
, . 
. , tion between R and R the following assumptions: 
. .  1 2 

,... .  . , . ,. ,...  1) I w / > a  
,P.. 

2)   a s  r approaches R
1 

f rom the l e f t ,  and the fields 

approach the weak field solutions 13) corresponding to 

56 
a positive point mass  a t  r es t  at  the origin , 

.  . 

3) no singularities in any of the field quantities occur be-

tween R
1 

and R 
2 

and in this region 5' 0 , 
?go, 

imply that there exists a constant > 0such that $d > L for all  /I > . 

H. Approximate Evaluation of Local 

; From Approximate Interior Solution 

and Boundary Condition 0 3 0  a s  -s 

Thus the discussion in XIII-G indicates that # 3 d  as t, + -a 
will require pressures a s  big as densities. However, i t  might be use- 

ful to  have more  quantitative consequences of this boundary condition. 

To thts end,' consider a static solid spherical ball and adjust the 

56  All that is  really needed is that the fields and their derivatives 

have signatures corresponding to the weak field case ,  i. e . ,  that 

they satisfy 16).  



pressure and density terms to make the interior metric the known 

solution of the Einstein problem. Specifically, assume that through- 

out the ball, 4 # 0. Hence, dividing XII-3)4)5) Page 79 9 by # , 
call the resulting right hand side 

with K reciprocal of $k at the origin. Hence, if the true mass  tensor 
-P 0 

is T85 ( ) . then P = PI and f , PI,PI,and @ a r e  determined 
5 PL 3 

by  

-
Assuming P = constant, the metric is  then (setting d =P = o a t  the 

origin) 



I 

' 
Thus,  setting # = 0 a t  the origin,  38) gives 

r-

Hence 

Fitt ing the derivative of the metr ic  to that of XII-33), XII-34), page 8 4 ,  

a t  r = R then yields 

It should be recalled that C i s  not a f r e e  constant but i s  determined by 
2  

= O t o b e C =  .. Hence 44)  and 45)  determine both C and B 
w -a 

in t e r m s  of , R,  and k . The remaining continuity condition, on 

, will then determine k . To get an idea of what it would be to 

lowest order  in , aaesume P- .P a r e  smal l .  

Then inside 



I 

From 45) 

so that 

where 

H e n c e $ 3 0  a s h  ->&seems to require a relation of the form 49).  

This bears some resemblance to the conjecture 

However, in 49) -t p >+p . 
Hence this model of a univeyse dpes not seem too satisfactory 

and more  study will be required. Of course, a more  reasonable bound- 

a r y  condition would be #+a cosmological solution. Some information 



XIV. Cosmology 

A. Introduction: Dirac 's  Conjecture 

As pointed out in  VI-A, pages 31 f . ,  cer ta in  numbers associ-   

a ted with the universe,  the Eddington numbers ,  when expressed  in  

"atomic units" ( $  = C = %=1)  groupaccording t o  o rde r  of magnitude.  

In particular  

where kw i s  the Hubble radius  (defined a s  the reciprocal  of the Hubble 

constant), k i s  the gravitational constant, 
n

is the age of the universe 

and hh=- * , with P the cosmological m a s s  density. F r o m  

these "coincidences" Dirac suggested that a comprehensive theory might 

yield approximate relations of the s o r t  

If the quantity -9 i s  assumed t o  be determined by the m a s s  d is t r i -  

bution in  the universe in iccordance  with a i e l r t i o n  of the fo rm 6~ 9 
for a point m a s s ,  then a s  a rough est imate,  it might be expected that 

where fly is the m a s s  visible ( i . e .  causally related) a t  
f$u 

the origin and R
v 

is some maximum visible "distance. ' I  Th is  i s  con- 

sistent with Dirac's conjectures if RvuR,,. In the following, only R H  

will be considered. 

Fur ther ,  defining 



it i s  easily seen that 1 )  or 2) would give 

4) 4~o, t" constant 

B.  

Associated with Einstein Equations 

Consider in the Eins@in case the Friedmann universe 

2  
= flat 3-metric, E = 2 !, D 

and the field equations reduce to 

the solutions to which are,  neglecting an additive constant for time, 



with/Kf  . Considering a tes t  particle near  the origin, 
3 

the observed gravitational constant i s  easily seen to be exactly k, 
which i s  constant, thus violating Dirac's / C ~ V  conjecture. On

t  
the other hand, for  a light r a y  received a t  the o r ~ g i n  at  t , the 

0 

coordinate r. at time of emissicn t. must  be related by 
1 1  

The choice t. = 0 QrR(t.) = 0 fo r  the ear l ies t  emit ted light ray  then 
1 1 I 

leads to the following re la t ionin  the three' cases  (using R=~X) 

Hence for the m a s s  in the vieible universe, 



For  the case & = 0 ,  

w 
Identifying the present value of t with the age of the universe ,O/d , 

gives a fit of the observed values of RH and P . It should also be 

noticed that a substitution twould yield M,.wMHu d
2 
. For  g= $1 

and 
A' 
-R 

near 1, the sin 
-1 

t e rm  in 8) i s  dominant so 

The Hubble radius and mass  a r e  now 

and both a re  rapidly increasing functions of time. The dominant con- 

-1
tribution to the visible mass  in thi~l range is  the sin t e rm  so that 



Hence 

For& = - 1 ,  R 3 4 , R/t  3 1  so that 

. . . , 
,, , 

, C. Field Theory.., Friedmann Analogue in 

, . 

For the scalar theory the field equation8 become 

~3 i'+ -A3i$& a@-3 



If this were the only restriction on and R ,  all the requirements 

of Diracls cosmology could be satisfied for & = 0, since +N 2, 
80 td , R H V  t. 5-t

2 , My- t
2 

a re  cctmpatible with it .  

App~opriate initial value data would consist of the values of 

4 , / ,P . and R at some time. Hence fbr general solution 

must contain three independent constante, apart from M. Further, 

if $ (t). p [t),R(t) is any solution, so also is  C1 '# (cZt ) .  

c,cZ2p 
CA

(C2t), -for any constants C1. C2. Hence, the 

field equations above, a s  would be expected, cannot yield any unique 

values for , , R but only relations inv~lving their ratios. 

Although these equationa a re  reducible to one first order ordinary 
0 /

differential equation, it$ form, (with #S R, X B  - 9 )  
t-to P Y Z d x  

seems to preclude exact general solution in terms of elementary 

functions . 

D. Special Solutions 

There is  an exact special solution, however, (only one free 

constant apart from M and t ) for 6 = 0, namely,
0 



with either 

. . 

In both cases. &++(&-$)so that the present t-t must be n~ 1040 
, and . j' 

9 ,,,,,, .. 
c or C W  10 vowever, to fit both the perihelion '*.

0 0 . .. , 

rotation,and light deflection rdsults within 10% of the Einstein value 

W C - V o r &> 8 so that in all cases %<,A . 
Further, from 28) 

The choice n = -4 requires 2~3)0for.,6'>d, ?>D, while /d>$, 
n = - - , leaves the sign of 2u.J-3 undetermined. The coordinate 

aw-v 
radius of the visible universe i s  now infinite for n = -4, while for 
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A b-3
?'I= - 3 ( J - ~ 9  it is  (assuming jg>O ) 

I  

40) A, 
ac, (a u -3) 

Thus -

.
There i e  a corresponding exact solution for C. # 0 namely (setting 

t = 0 for simplicity) 
0 - 

R =  B (a+t=) 
with 

and 



For d>0 , P ( ~ Y ~ ) > o .  andG>d imply (ad-$>d.while/>o Thue 

6)0 requires P 50 , ~ U - > > D. Since there a r e  now no zeros of 

R(C) , the lower limit of time in the visible radius determination 

must be -b . Hence 

and 

The fact that for t>O, Aria negative i e  essentially due to the fact 

that the coordinate system I, & , 4 ie  not globally defined. How-

ever,  this is  only a formal difficult9 and is discussed in appendix A. 

The f i rs t  term i e  the dominant term for large Ld in the right 

1
hand side of 48)since the second is bounded by k- . Hence

4  

From 46)./$>o require. t > 0  . F a r  d << / ,
!a 



To fit present values to lowest order in 6 
-t 

so that to lowest order 
) 



Hence, while present values can be fit by T-10 
40 

, 
4
U

2 
; I ,Y/  

there is no natural finite age for the univeree and the detailed Dirac 

relationships a re  satisfied only at present. Similarly, for fi<< /
t  

Again, only present value8 can be fit by <% 4!< 8 = 7except 

that now I )He /  ie approximately satisfied for & sufficiently large. 

F o r  < 0 , e=.#/,ad-3 <o, and (3>0, $)o , /?,> 0 imply
C  

and, using the notation of appendix A (with2 = lower limit of integra- 
L. 

Thus, since 



Similarly for a < a 
d - J' J L U - 3  > b  

58)  

and 

so that a s  f 3 ~  ., /Vq9-
L ( 

To estimate general solutions the f i rs t  few terms in an expan- 

sion in powere of will be given. 

Before beginning this ,  however, it i a  convenient to  notice some 

facts about the constants of integration in  an extended type of pertur- 

bation procedure since it i s  important to see whether new constants 



a r e  meaningfully introduced a t  any stage. 

In appendix B i t  is shown that if i n  a perturbation calculation 

of the solution of rr simultaneous f i r s t  order  ordinary differential 

equations the most general  solution (which may contain fewer than 

n constants) has been obtained to the lowest order  equations, then 

only special solutions in higher order  need be used. In other  words, 

the extra  constants in  higher o r d e r  solutions a r e  -not independent of 

those containedin the lowest o r d e r  solution. Although this is trivial  

f o r  l inear  equations with al l  constants additive, it i s  not obvious in  

some of the cases  considered below. 

L 29) yielde to f i r a t  o r d e r  in  

F o r  6 = 0, the leading t e r m s  on 26) a r e  of order  and reduce to 

s o  that e i ther  
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- f L  

However, this latter is  simply the exact solution 31) with n = -4 

found above. 

G. E = ~ ; a = b = ~ ;4 = O   

Consider now 64),  requiring 3a + b = 0,  

0
Further, W terms in 26) yield 

so  that 

-1
26) now becomes to order 



80 that 

and 

From appendix B,  C and C can be arbitrarily fixed in 69),
1 2 

7 1 ) .  In particular, if %-to is not large, in order to make the 
t-t,  

expansion meaningful at present, c: -&@-<,)where i a  one of 

the order of magnitude of tho present time and C
2 

can be set at 

zero, Hence, aetting a = b 0 givea 

/ 



L 

73 cont'd) 

This is a gener&l solution since there a re  four independent constants 

M, G , t , t, and prese.st values can be fitwith t-t, lo4% 10
40. 

v ' 0  J 0 

F o r  t = t , i t  ia seen to be simply an expansion of the special solution 
Q I 

31) 32) withn = - and with proper adjustment of the constants. 
3wy.

For  t 
0 
$ t

I: 
no information can be bbtained about the radius and mass 

of the visible universe since the procedure is  clearly divergent for 
.:..  
,... .. . small t-t . .  
. -..... . ~  I '  
,:..
s .. 
b:
.,,, 

# 

H. . = + I ;  a = 0; d $ ~  

e 21
Congider now 6 = *1. The term in 26) requires that a = a ,.R. 

with n an integer or zero. For # ~ ~ $ 6, a = 0, it is  seen that 26) is 

a first  order differential equation for and involves only R with 
m 

rn < n while 2 9 )  gives R in terms of in a zerothorder equation 
n 'h 

(i.e .  , no free constants). Hence this procedure will yield only a '  

special solution. In fact, from 26) 



s o  that, neglecting the constant, (see  appendix B) 

and 

However, this i s  simply an expansion of the special solution 43) 

with the substitutions 

For a = 0,  # = C , b = 0 and to terms of order W 
d 

, 26) re -  
0 0 

duces to the Einstein equation for Rg with replacing k and 

Hence expressing t-t as a function of R through 8) or lo ) ,  
1 '  1 



where 

so  that for 6 = t1 

and, for 6 = -1  

~ r o *26) it ia aeen that R1 can be taken aaf i ( a i n c e  3 =-i#)with f.
i I  

given by 

Although it is  posaible that the integration can be performed in terms 

of elementary functions, its form will undoubtedly be unwieldy. However, 



several  limiting cases  will be considered. F o r  smal l  r, 

a"-. '&' in Q , $a M 
and the le8ding term. . approach the 

values in 89), 91) below. Fur the r ,  86) differs f rom the correspond- 

ing equation determining R
1 

in 89) only through the 6 t e rms ,  in 

the lat ter .  Hence a s  t - tl-> 0, this case  yields relations 94) 

with 6 = 0 to lowest o rde r  in  t - t  
1 '  

F o r  = + I ,  C T n e a r  1. t-t+- nM and the f i r s t  few terms 
1 6C 

in an expansion about t = t + -HM a r e  
0 

1 6 C . .  
0 

R  
F o r &  = - I ,  r l a r g e ,  -0 

-3 1, apd the dominant t e r m  in 85)
t - t  

1
is  the logarithm. 



where +means asymptotically i. e. the ratio of the two sides  

approaches one as  (t-t )+- . Clearly by adjusting a constant,  
1  

f can be made zero a t  any time.  

.  
J. 6 = & I ;  a = f ;  A#o 

For a = f , d#0 , again only an expansion of 43) is  obtained. 
.: 

K. ~ = i l ; a = d ; d = o   

For a=$ , a=C;; , b=-2 and 26) to orde; W 
0 

yields  

I 
, 

89) 

and f ~ o m  29) 

, 
90) 

or 

9 1 )  +,= - -3 

26) to order U-' then gives ' 

92) 

and 

- PC,, +(+, C-6)-yft- t;~,) j .  -4[a
2 0 3~ t-t,

93) 

- L + -2% r~ -$ 
( t - 6 , )  0 3ty 



Thue 

94) 

l b  

Again the procedure diverges for small t-t so that no information 
1 '  

corresponding to the visible mass and r ~ d i u s  i s  obtained from it. 

For a = -f , 26). 29) reduce to 

so that 



which is  again just an expansion of 43). 

M. c p i l ;  a :  -2;(5,=0 
I 

Finally, a = - $. , & = 0 i s  incompatible withh#O. 

N.  Summary and Conclusions; 

Relation to Dirac ' u  Conjecture 

In summaqy, then, the following types of time dependence  

appear in $ linearly:  

Z! -+   (pages 105, 106) 

(page 107) 

(page 114) 

Fo r  reasonable ranges of W , none of these appear to r e -  

semble Diracle f#wt conjecture. Further to fit present v a l u e ~ ,  

very large ( 1 0 ~ ~ ' o r  bigger in atomic units) constants must be 

chosen. 

Of course,  the assumption of a homogeneous universe without 

pressure cannot be regarded a s  realistic near the time origin. 

The behavior of the metric  and scalar  fields near this point where 

matter  i s  in a highly condensed state would be very complex 

and probably bear little resemblance to that in the pressureless 

uniform model. It i s  possible that relatively simple conditions 

on near the origin would then produce the large constant needed. 



It  seems that some sor t  of boundary condition will be needed 

to eliminate this extra  constant (XIV-Cpge lM,XIII-A page 87) 

Perhaps spatial uniformity might be discarded and a time dependent 

model used in which a spatial condition, such a s  +->O outside mat-  

t e r ,  be imposed. 

At any ra te ,  i t  ds c l ea r  that the present understanding of cosmo- 

logical models i s  inadeguate and will require further study. The main 

conclusion to be drawn from the study above i s  that a Friedmann type 

universe does not seem to predict a relation of the form #=co 

over any significant interval of time. 

0. Lowest Order  Effects 

of Slowly Varying k on Planetary Orbits 

In o rde r  to look a t  some of the effects of a slowly varying gravi-  

tational constant on Newtonian orbi ts ,  consider the particle Lagrangian, 

with k= %(r+dd) :4 , S constant and small.  "Angular momentum" 

i s  conserved a s  usual because of rotational invariance. The "total 

P 
energy, I '  E ,  however is not, and in  fact.7- denoting total deriva-  

tive along the path, 



-- an&S + s 2  
/-dE 

The change per periodgf the eccentricity 6 2 IWi a  thus 

I XV. Conservation Laws 

A. IntroductionI 
Methods have already been given (IV-E, pages 21 f . ,  IX-C,page 

71 f. ) f a r  . obtaining. a "mass:" associated with cer ta in  solutions 

to the field equations. More precisely, wayswere discuseed for 

obtaining experimentally measurable nurnbers f r o m  constants ap- 

pearing in the field variables .  

Other poesible numbers can be obtained from conservation 

solutions which might be called "total masses"  o r  "total energies. " 

Of couree these "masses" a r e  lees precisely defined in  the sense 

that they a r e  not a s  directly related to experimentally meaaured 

numbers a s  a r e  the inertial  and active gravitational masses  diecuss- 

ed  above. 

In this section the s tructure of conservation laws associated 

57  F o r  a n  extensive discussion of conservation laws and their uses 

see  J.  Fletcher ,  Rev. Mod. Phys. -3 2  65 (1960). 



with the field equations VII-7). 8), 9) page 51 will be studied.  

In this case there a r e  really two possible approaches. In the  

f i rs t ,  the field equations a re  divided by # to give an Einstein-  

type equation with modified energy tensor. Procedures used in  

the Einstein case a re  then applicable. Hence the expression of  

a conserved quantity a s  a function of the metric only is  the same as   -

in general relativity. The resultant conserved total "mass" has 

units of length, however, and corresponds to some averaged gra- 

vitational constant times total mass.  

Alternate procedures yield a conserved tfmass'l  having true 
I 7  G 

units of mass  and to which / d  instead of $ - l Y w 0  contributes 
matter matter 

directly. This "total mass" is  found to be equal to the "total Schwarzs 

child radius" times the asymptotic value of 9. Further,  both a re  

linearly proportional t~ the inertial mass at  least through first, 

order in mass. Hence, the not too surprising result is obtained 

that for an isolated system inertial mass is  at least approximately 

conserved a s  well as some sor t  of "total Schwarzschild radius. I '  

B. M611er1s Procedure: Evaluation of Constants 

The mpst straightforward procedure for obtaining conservation 

laws i s  bssed on the assumption +#o everywhere. The resulting 

equations may then be regarded a s  Einstein equations with modified 

matter tensor constructed from 4 and the variables describing 

matter itself. Hence the procedure described by M$ller may be used, 

and the quantity defined by 2' 

with 5 



-- e[jdv(c:+4''- a ~~p0 /a&t jy/le,)ia L  
2) 

+ $5 , ; *@~f04Y +  1 J? C + l ~
4 3.4 

satisfies 

and the quantity 

can be considered as  being proportional to the'ltotal momentum," In 

particular for the static, spherically symmetric solution XII-19)-21), 

page 82 with constants B, C euch that the metric becomes aayrnp- 

totically flat and $I approaches a constant, 
I<
L,then 

and I 

1 

For the weak field case, this becornea to lowest order I 

/i 
/ i  

This is  alsothe inertial mass,  (IV-E,pages 21 f . ,  XdC, pages 71 f . )  

at least approximately. 



The "gravitational mass" P a s  measured by coordinate accele- 
G 0 

ration multiplied by 4~ times the square of coordinate distance at   

32rrB 
infinity i s  Gc = - . Hence

A 

While from XII-23) page 8 2  to lowest order, C + 1 = 
W -
-

1 
2 

, inde-

pendent of the inertial mass  p ,  of the gravitating body, i t  might be 

thought that p would enter in higher order. That this i s  not true for 

next lowest order is  seen from XII-11) page 80 giving C a s  the ratio 

of& k 4 to d . For a single point particle of inertial mass p at 

res t  at  the origin, from 1x11 2 )  page 72, 

and ,$J satisfies 

+-> 
A*&  

0 yields 

through first  order in p and to  this approximation "gravitational 

mass" and total energy defined in 6) above a re  proportional. 



C,. Criticism: Canonical Procedure 

However, the main criticism that might be raised against this 

approach is  that so defined cannot meaningfully be compared 

with inertial mass since it is expressed in a unit of length and seems 

to correspond to some average gravitational constant times total 

energy. In fact, it is  easily seen that the direct contribution of mat-  

t e r  to liis from a t e rm of form "+'. There a r e  several 

ways to eliminate this difficulty and construct a conserved quantity 

to which f i  contributes linearly. Perhaps the most straight- 

forward is  to proceed in standard fashion after obtaining a f irst  o r -  

der Lagrangian. Notice that 

with 

14) 

Thus, with 

and using the fact that the variation of the total Lagrangian is  zero 

E
! 

in the usual manner, 



Although the conserved quantity in brackets can be expressed purely 

in te rms of the me t r i c  and sca lar  fields, it does not seem to be the 

divergence of any reasonably simple functions. 

D. AnotherMethod: Summary 

The second method is considerably more  practical,  however, 

Namely, construct the conserved Einstein quantity a s  the divergence 

of an antisymmetric affine tensor.  The lat ter  can then be multiplied 

by , and the divergence of the resulting quantity ie  again identi- 
5 8 

cally conserved, Specifically, following Pauli  , apar t  f rom sign 

ch+nges, for &'defined in 2) 

where 

19)  

58 W .  Pauli,  Theory of Relativity, (1958), pp. 215-216. 



Hence, for the scalar th'eory define 

so that 

and is  again an atfine tensor. E"  
Further, for the static case at any rate,  it is clear that 

with Po defined in 4) above. 

In summary then, a reasonable total energy, having dimensions 

of energy, caq be constructed which is equal to the inertial mass ,  p, 

at  least through second order in p. 



APPENDIX A  

If the space part  of the metric XIV-5)page 1O l i s  interpreted 

a s  being that of a unit 3 sphere in a flat space, then it can be 

expressed \.~ 

-
or  in terms of polar coordinates p ,  , 6,p,with 

&375g;?py. 2 
0
- Q J L  

Thus the coordinate system used in the calculation, in XIV, 'h, 

@ , 4 , i s  given locally by 

Hence, setting $ = 0 for  r = 0, as  $J goes from 0 to Zn around the 

universe at  constant time, r goes from 0 to at  = n. then from 

- '/'= at0back to Oo 1 t.  Further ,  for a light ray along /J=0, 

so that, using XIV-43)page 1 0 7 ,  

i 



i
and performing b$b3Y in ,& , coordinates 

J 

Hence, as long as the phase ia properly interpreted, XIV-48) page 108 

can be formally used even for negative r . 
v 



APPENDIX B 

Writing the equation as  

with y a n d 5  n-column matrices it  i s  desired to investigate solu- 

tions which do not necessarily reduce, for small E , to , the 

known (i.e.  Einstein) solution to 1 )  with 6 = 0. For this purpose 

set  

with E a diagonal n x n matrix non-singular for QZDand with non- 

zero elements consisting of powers of E .  Further assume that 

where F is continuous in G at  E = 0 and P is a matrix of the 

*r;same sor t  a s  E and such that E"P has elements of 6 P E  with
d 

nl; a positive or negative integer or zero. Hence, forh+d, I )  

becomes equivalent to 

where 

5) 

Assume now that Q E  C 
at l 

for some m)O. In this case then a 

perturbation procedure will yield an approximate solution of order m, 6 



i. e .  a function z&) such that 

The perturbation procedure i s  defined a s  follows. Writing 

with 
L 
3 independent of 6 , rising the fact that &C *?/ 

with 

and H is  boundedfor small . Hence a nasc. for 6) i s  that for 

each P_( m 

For the particular form 4) of Q, if no n.C 0,N = 0 and 10) for P = 0 
1 

gives 

From standard theorems, 2 then has exactly n independent con- 
0  

stants, a number which clearly is already the maximum possible in 

: 2 itself. Hence assume that n. < 0 for at  least i and in fact let 
1  



so that, for 3 

For cases of interest. 

I 

so that 13) can be solved for oz. . . .otYa@functions of and 

2-I. . . . bn. Inserting this into 11) gives a stancard
0 

quation for ,Z 
-1 / . . . t? Hence the total solution,t 

L 
has 

0 

exactly 3-v independent constants oc4 
, From 10) for p 2 / 

!
I 



(the dependence o n o c ~ ~ ,  coming from the 2 r , ,  )C 2 in  G'
P-t 0 P7 

the most general solutiop to 16) and 17) can be written 

The main assertion of this discussion i s  then that to order 6 
m 

, the 

constants, ,CI* , may be arbitrarily fixed and in particular ae in- 

troduced in l a ) ,  may be set zero. More precisely, for anyoC~~*,,$C 

there exists a ok such that 

where 

0 m 0 
In fact define a sequ?nce,oK'" / E,K as  follows. Let K = ,c 
and assume that ,, ,k' d has been defined for 0 1&x/ < r / r )  such 

that 

so that from 20), 21), for 0 ,< & _< L 

/ 



1 0 L 
Since both $(&) and 2 a r e  mth order  solutions to I),both. 2 LC) and 

L+/ 

a r e  solutions to 16), 1 7 i ,  for P = i + 1 ,  with the a r g u m e n t s o t  - 'Z=:Z
t% 

of Gion the right hand aides identical for both. Hence their dif- 

ferences i s  a solution to  the corresponding homogeneous equations 
i ar  

and there exists a s e t  A such that 

Defining 

then gives 

Hence, by induction, dk
*I 

=pk i s  defined a s  required in 19). 

In the applications in the test (XIY) y will be (R, # ) with 1) 

given by XIV-26)and XIV-29) pages 104, 105, x = t and E = 3
1 . 
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